DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context
Tuning
- URL: http://arxiv.org/abs/2212.02851v2
- Date: Sat, 21 Oct 2023 14:30:15 GMT
- Title: DiSTRICT: Dialogue State Tracking with Retriever Driven In-Context
Tuning
- Authors: Praveen Venkateswaran, Evelyn Duesterwald, Vatche Isahagian
- Abstract summary: We propose DiSTRICT, a generalizable in-context tuning approach for Dialogue State Tracking (DST)
DSTRICT retrieves highly relevant training examples for a given dialogue to fine-tune the model without any hand-crafted templates.
Experiments with the MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches in various zero-shot and few-shot settings.
- Score: 7.5700317050237365
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dialogue State Tracking (DST), a key component of task-oriented conversation
systems, represents user intentions by determining the values of pre-defined
slots in an ongoing dialogue. Existing approaches use hand-crafted templates
and additional slot information to fine-tune and prompt large pre-trained
language models and elicit slot values from the dialogue context. Significant
manual effort and domain knowledge is required to design effective prompts,
limiting the generalizability of these approaches to new domains and tasks. In
this work, we propose DiSTRICT, a generalizable in-context tuning approach for
DST that retrieves highly relevant training examples for a given dialogue to
fine-tune the model without any hand-crafted templates. Experiments with the
MultiWOZ benchmark datasets show that DiSTRICT outperforms existing approaches
in various zero-shot and few-shot settings using a much smaller model, thereby
providing an important advantage for real-world deployments that often have
limited resource availability.
Related papers
- DialCLIP: Empowering CLIP as Multi-Modal Dialog Retriever [83.33209603041013]
We propose a parameter-efficient prompt-tuning method named DialCLIP for multi-modal dialog retrieval.
Our approach introduces a multi-modal context generator to learn context features which are distilled into prompts within the pre-trained vision-language model CLIP.
To facilitate various types of retrieval, we also design multiple experts to learn mappings from CLIP outputs to multi-modal representation space.
arXiv Detail & Related papers (2024-01-02T07:40:12Z) - Schema Graph-Guided Prompt for Multi-Domain Dialogue State Tracking [16.955887768832046]
We propose a graph-based framework that learns domain-specific prompts by incorporating the dialogue schema.
Specifically, we embed domain-specific schema encoded by a graph neural network into the pre-trained language model.
Our experiments demonstrate that the proposed graph-based method outperforms other multi-domain DST approaches.
arXiv Detail & Related papers (2023-11-10T19:00:02Z) - Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
Large pre-trained language models (PLMs) have shown impressive unaided performance across many NLP tasks.
For more complex tasks such as dialogue state tracking (DST), designing prompts that reliably convey the desired intent is nontrivial.
We introduce a saliency model to limit dialogue text length, allowing us to include more exemplars per query.
arXiv Detail & Related papers (2023-02-12T15:05:10Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
We introduce GODEL, a large pre-trained language model for dialog.
We show that GODEL outperforms state-of-the-art pre-trained dialog models in few-shot fine-tuning setups.
A novel feature of our evaluation methodology is the introduction of a notion of utility that assesses the usefulness of responses.
arXiv Detail & Related papers (2022-06-22T18:19:32Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - A Simple But Effective Approach to n-shot Task-Oriented Dialogue
Augmentation [32.43362825854633]
We introduce a framework that creates synthetic task-oriented dialogues in a fully automatic manner.
Our framework uses the simple idea that each turn-pair in a task-oriented dialogue has a certain function.
We observe significant improvements in the fine-tuning scenarios in several domains.
arXiv Detail & Related papers (2021-02-27T18:55:12Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
We introduce the RADDLE benchmark, a collection of corpora and tools for evaluating the performance of models across a diverse set of domains.
RADDLE is designed to favor and encourage models with a strong generalization ability.
We evaluate recent state-of-the-art systems based on pre-training and fine-tuning, and find that grounded pre-training on heterogeneous dialog corpora performs better than training a separate model per domain.
arXiv Detail & Related papers (2020-12-29T08:58:49Z) - Non-Autoregressive Dialog State Tracking [122.2328875457225]
We propose a novel framework of Non-Autoregressive Dialog State Tracking (NADST)
NADST can factor in potential dependencies among domains and slots to optimize the models towards better prediction of dialogue states as a complete set rather than separate slots.
Our results show that our model achieves the state-of-the-art joint accuracy across all domains on the MultiWOZ 2.1 corpus.
arXiv Detail & Related papers (2020-02-19T06:39:26Z) - Domain-Aware Dialogue State Tracker for Multi-Domain Dialogue Systems [2.3859169601259347]
In task-oriented dialogue systems the dialogue state tracker (DST) component is responsible for predicting the state of the dialogue based on the dialogue history.
We propose a domain-aware dialogue state tracker that is completely data-driven and it is modeled to predict for dynamic service schemas.
arXiv Detail & Related papers (2020-01-21T13:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.