Causal Inference via Style Transfer for Out-of-distribution
Generalisation
- URL: http://arxiv.org/abs/2212.03063v2
- Date: Sat, 10 Jun 2023 12:01:04 GMT
- Title: Causal Inference via Style Transfer for Out-of-distribution
Generalisation
- Authors: Toan Nguyen, Kien Do, Duc Thanh Nguyen, Bao Duong, Thin Nguyen
- Abstract summary: Out-of-distribution generalisation aims to build a model that can generalise well on an unseen target domain.
We propose a novel method that effectively deals with hidden confounders by successfully implementing front-door adjustment.
- Score: 10.998592702137858
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Out-of-distribution (OOD) generalisation aims to build a model that can
generalise well on an unseen target domain using knowledge from multiple source
domains. To this end, the model should seek the causal dependence between
inputs and labels, which may be determined by the semantics of inputs and
remain invariant across domains. However, statistical or non-causal methods
often cannot capture this dependence and perform poorly due to not considering
spurious correlations learnt from model training via unobserved confounders. A
well-known existing causal inference method like back-door adjustment cannot be
applied to remove spurious correlations as it requires the observation of
confounders. In this paper, we propose a novel method that effectively deals
with hidden confounders by successfully implementing front-door adjustment
(FA). FA requires the choice of a mediator, which we regard as the semantic
information of images that helps access the causal mechanism without the need
for observing confounders. Further, we propose to estimate the combination of
the mediator with other observed images in the front-door formula via style
transfer algorithms. Our use of style transfer to estimate FA is novel and
sensible for OOD generalisation, which we justify by extensive experimental
results on widely used benchmark datasets.
Related papers
- Learning Non-Linear Invariants for Unsupervised Out-of-Distribution Detection [5.019613806273252]
We propose a framework consisting of a normalizing flow-like architecture capable of learning non-linear invariants.
Our approach achieves state-of-the-art results on an extensive U-OOD benchmark.
arXiv Detail & Related papers (2024-07-04T16:01:21Z) - Detecting Spurious Correlations via Robust Visual Concepts in Real and
AI-Generated Image Classification [12.992095539058022]
We introduce a general-purpose method that efficiently detects potential spurious correlations.
The proposed method provides intuitive explanations while eliminating the need for pixel-level annotations.
Our method is also suitable for detecting spurious correlations that may propagate to downstream applications originating from generative models.
arXiv Detail & Related papers (2023-11-03T01:12:35Z) - Feature Correlation-guided Knowledge Transfer for Federated
Self-supervised Learning [19.505644178449046]
We propose a novel and general method named Federated Self-supervised Learning with Feature-correlation based Aggregation (FedFoA)
Our insight is to utilize feature correlation to align the feature mappings and calibrate the local model updates across clients during their local training process.
We prove that FedFoA is a model-agnostic training framework and can be easily compatible with state-of-the-art unsupervised FL methods.
arXiv Detail & Related papers (2022-11-14T13:59:50Z) - Relation Matters: Foreground-aware Graph-based Relational Reasoning for
Domain Adaptive Object Detection [81.07378219410182]
We propose a new and general framework for DomainD, named Foreground-aware Graph-based Reasoning (FGRR)
FGRR incorporates graph structures into the detection pipeline to explicitly model the intra- and inter-domain foreground object relations.
Empirical results demonstrate that the proposed FGRR exceeds the state-of-the-art on four DomainD benchmarks.
arXiv Detail & Related papers (2022-06-06T05:12:48Z) - Learning Unbiased Transferability for Domain Adaptation by Uncertainty
Modeling [107.24387363079629]
Domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled or a less labeled but related target domain.
Due to the imbalance between the amount of annotated data in the source and target domains, only the target distribution is aligned to the source domain.
We propose a non-intrusive Unbiased Transferability Estimation Plug-in (UTEP) by modeling the uncertainty of a discriminator in adversarial-based DA methods to optimize unbiased transfer.
arXiv Detail & Related papers (2022-06-02T21:58:54Z) - Instrumental Variable-Driven Domain Generalization with Unobserved
Confounders [53.735614014067394]
Domain generalization (DG) aims to learn from multiple source domains a model that can generalize well on unseen target domains.
We propose an instrumental variable-driven DG method (IV-DG) by removing the bias of the unobserved confounders with two-stage learning.
In the first stage, it learns the conditional distribution of the input features of one domain given input features of another domain.
In the second stage, it estimates the relationship by predicting labels with the learned conditional distribution.
arXiv Detail & Related papers (2021-10-04T13:32:57Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Universal Source-Free Domain Adaptation [57.37520645827318]
We propose a novel two-stage learning process for domain adaptation.
In the Procurement stage, we aim to equip the model for future source-free deployment, assuming no prior knowledge of the upcoming category-gap and domain-shift.
In the Deployment stage, the goal is to design a unified adaptation algorithm capable of operating across a wide range of category-gaps.
arXiv Detail & Related papers (2020-04-09T07:26:20Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
We identify the connection between the task of bias reduction and that of isolating factors common between domains.
To isolate the common factors we combine the theory of deep latent variable models with information bottleneck theory.
Two outer VAEs with shared weights attempt to reconstruct the input and infer a latent space, whilst a nested VAE attempts to reconstruct the latent representation of one image, from the latent representation of its paired image.
arXiv Detail & Related papers (2020-02-26T15:49:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.