Learning Continuous Depth Representation via Geometric Spatial
Aggregator
- URL: http://arxiv.org/abs/2212.03499v1
- Date: Wed, 7 Dec 2022 07:48:23 GMT
- Title: Learning Continuous Depth Representation via Geometric Spatial
Aggregator
- Authors: Xiaohang Wang, Xuanhong Chen, Bingbing Ni, Zhengyan Tong, Hang Wang
- Abstract summary: We propose a novel continuous depth representation for depth map super-resolution (DSR)
The heart of this representation is our proposed Geometric Spatial Aggregator (GSA), which exploits a distance field modulated by arbitrarily upsampled target gridding.
We also present a transformer-style backbone named GeoDSR, which possesses a principled way to construct the functional mapping between local coordinates.
- Score: 47.1698365486215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Depth map super-resolution (DSR) has been a fundamental task for 3D computer
vision. While arbitrary scale DSR is a more realistic setting in this scenario,
previous approaches predominantly suffer from the issue of inefficient
real-numbered scale upsampling. To explicitly address this issue, we propose a
novel continuous depth representation for DSR. The heart of this representation
is our proposed Geometric Spatial Aggregator (GSA), which exploits a distance
field modulated by arbitrarily upsampled target gridding, through which the
geometric information is explicitly introduced into feature aggregation and
target generation. Furthermore, bricking with GSA, we present a
transformer-style backbone named GeoDSR, which possesses a principled way to
construct the functional mapping between local coordinates and the
high-resolution output results, empowering our model with the advantage of
arbitrary shape transformation ready to help diverse zooming demand. Extensive
experimental results on standard depth map benchmarks, e.g., NYU v2, have
demonstrated that the proposed framework achieves significant restoration gain
in arbitrary scale depth map super-resolution compared with the prior art. Our
codes are available at https://github.com/nana01219/GeoDSR.
Related papers
- Decoupling Fine Detail and Global Geometry for Compressed Depth Map Super-Resolution [55.9977636042469]
Bit-depth compression produces a uniform depth representation in regions with subtle variations, hindering the recovery of detailed information.
densely distributed random noise reduces the accuracy of estimating the global geometric structure of the scene.
We propose a novel framework, termed geometry-decoupled network (GDNet), for compressed depth map super-resolution.
arXiv Detail & Related papers (2024-11-05T16:37:30Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
Traditional 3D networks mainly focus on local geometric details and ignore the topological structure between local geometries.
We propose a novel Priors Distillation (RPD) method to extract priors from the well-trained transformers on massive images.
Experiments on the PointDA-10 and the Sim-to-Real datasets verify that the proposed method consistently achieves the state-of-the-art performance of UDA for point cloud classification.
arXiv Detail & Related papers (2024-07-26T06:29:09Z) - GeoLRM: Geometry-Aware Large Reconstruction Model for High-Quality 3D Gaussian Generation [65.33726478659304]
We introduce the Geometry-Aware Large Reconstruction Model (GeoLRM), an approach which can predict high-quality assets with 512k Gaussians and 21 input images in only 11 GB GPU memory.
Previous works neglect the inherent sparsity of 3D structure and do not utilize explicit geometric relationships between 3D and 2D images.
GeoLRM tackles these issues by incorporating a novel 3D-aware transformer structure that directly processes 3D points and uses deformable cross-attention mechanisms.
arXiv Detail & Related papers (2024-06-21T17:49:31Z) - Hi-Map: Hierarchical Factorized Radiance Field for High-Fidelity
Monocular Dense Mapping [51.739466714312805]
We introduce Hi-Map, a novel monocular dense mapping approach based on Neural Radiance Field (NeRF)
Hi-Map is exceptional in its capacity to achieve efficient and high-fidelity mapping using only posed RGB inputs.
arXiv Detail & Related papers (2024-01-06T12:32:25Z) - DSR-Diff: Depth Map Super-Resolution with Diffusion Model [38.68563026759223]
We present a novel CDSR paradigm that utilizes a diffusion model within the latent space to generate guidance for depth map super-resolution.
Our proposed method has shown superior performance in extensive experiments when compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-11-16T14:18:10Z) - Discrete Cosine Transform Network for Guided Depth Map Super-Resolution [19.86463937632802]
The goal is to use high-resolution (HR) RGB images to provide extra information on edges and object contours, so that low-resolution depth maps can be upsampled to HR ones.
We propose an advanced Discrete Cosine Transform Network (DCTNet), which is composed of four components.
We show that our method can generate accurate and HR depth maps, surpassing state-of-the-art methods.
arXiv Detail & Related papers (2021-04-14T17:01:03Z) - High-resolution Depth Maps Imaging via Attention-based Hierarchical
Multi-modal Fusion [84.24973877109181]
We propose a novel attention-based hierarchical multi-modal fusion network for guided DSR.
We show that our approach outperforms state-of-the-art methods in terms of reconstruction accuracy, running speed and memory efficiency.
arXiv Detail & Related papers (2021-04-04T03:28:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.