Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising
- URL: http://arxiv.org/abs/2212.04832v1
- Date: Fri, 9 Dec 2022 13:03:24 GMT
- Title: Noise2Contrast: Multi-Contrast Fusion Enables Self-Supervised
Tomographic Image Denoising
- Authors: Fabian Wagner, Mareike Thies, Laura Pfaff, Noah Maul, Sabrina
Pechmann, Mingxuan Gu, Jonas Utz, Oliver Aust, Daniela Weidner, Georgiana
Neag, Stefan Uderhardt, Jang-Hwan Choi, Andreas Maier
- Abstract summary: Noise2Contrast combines information from multiple measured image contrasts to train a denoising model.
We stack denoising with domain-transfer operators to utilize the independent noise realizations of different image contrasts to derive a self-supervised loss.
Our experiments on different real measured data sets indicate that Noise2Contrast generalizes to other multi-contrast imaging modalities.
- Score: 6.314790045423454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-supervised image denoising techniques emerged as convenient methods that
allow training denoising models without requiring ground-truth noise-free data.
Existing methods usually optimize loss metrics that are calculated from
multiple noisy realizations of similar images, e.g., from neighboring
tomographic slices. However, those approaches fail to utilize the multiple
contrasts that are routinely acquired in medical imaging modalities like MRI or
dual-energy CT. In this work, we propose the new self-supervised training
scheme Noise2Contrast that combines information from multiple measured image
contrasts to train a denoising model. We stack denoising with domain-transfer
operators to utilize the independent noise realizations of different image
contrasts to derive a self-supervised loss. The trained denoising operator
achieves convincing quantitative and qualitative results, outperforming
state-of-the-art self-supervised methods by 4.7-11.0%/4.8-7.3% (PSNR/SSIM) on
brain MRI data and by 43.6-50.5%/57.1-77.1% (PSNR/SSIM) on dual-energy CT X-ray
microscopy data with respect to the noisy baseline. Our experiments on
different real measured data sets indicate that Noise2Contrast training
generalizes to other multi-contrast imaging modalities.
Related papers
- Neighboring Slice Noise2Noise: Self-Supervised Medical Image Denoising from Single Noisy Image Volume [12.077993066353294]
We propose a novel self-supervised medical image denoising method, Neighboring Slice Noise2Noise (NS-N2N)
NS-N2N only requires a single noisy image volume obtained from one medical imaging procedure to achieve high-quality denoising of the image volume itself.
arXiv Detail & Related papers (2024-11-16T16:24:28Z) - The role of noise in denoising models for anomaly detection in medical
images [62.0532151156057]
Pathological brain lesions exhibit diverse appearance in brain images.
Unsupervised anomaly detection approaches have been proposed using only normal data for training.
We show that optimization of the spatial resolution and magnitude of the noise improves the performance of different model training regimes.
arXiv Detail & Related papers (2023-01-19T21:39:38Z) - Noise2SR: Learning to Denoise from Super-Resolved Single Noisy
Fluorescence Image [9.388253054229155]
Noise2SR is designed for training with paired noisy images of different dimensions.
It is more efficiently self-supervised and able to restore more image details from a single noisy observation.
We envision that Noise2SR has the potential to improve more other kind of scientific imaging quality.
arXiv Detail & Related papers (2022-09-14T04:44:41Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - ISCL: Interdependent Self-Cooperative Learning for Unpaired Image
Denoising [3.796436257221662]
We propose a novel image denoising scheme, Interdependent Self-Cooperative Learning (ISCL)
ISCL combines cyclic adversarial learning with self-supervised residual learning.
We demonstrate that ISCL is superior to conventional and current state-of-the-art deep learning-based image denoising methods.
arXiv Detail & Related papers (2021-02-19T10:54:25Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Suppression of Correlated Noise with Similarity-based Unsupervised Deep
Learning [7.61850613267116]
Noise2Sim is an unsupervised deep denoising approach that works in a nonlocal nonlinear fashion to suppress correlated noises.
Nosie2Sim recovers features from noisy low-dose and photon-counting CT images as effectively as or even better than supervised learning methods.
arXiv Detail & Related papers (2020-11-06T14:31:08Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
We introduce Noise2Same, a novel self-supervised denoising framework.
In particular, Noise2Same requires neither J-invariance nor extra information about the noise model.
Our results show that our Noise2Same remarkably outperforms previous self-supervised denoising methods.
arXiv Detail & Related papers (2020-10-22T18:12:26Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Self-supervised Dynamic CT Perfusion Image Denoising with Deep Neural
Networks [6.167259271197635]
Dynamic computed tomography (CTP) imaging is a promising approach for acute ischemic stroke diagnosis and evaluation.
Hemodynamic parametric maps of cerebral parenchyma are calculated from repeated CT scans of the first pass of iodinated contrast through the brain.
It is necessary to reduce the dose of perfusion for routine applications due to the high radiation exposure from the repeated scans, where image denoising is necessary to achieve a reliable diagnosis.
arXiv Detail & Related papers (2020-05-19T21:44:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.