Frugal Reinforcement-based Active Learning
- URL: http://arxiv.org/abs/2212.04868v1
- Date: Fri, 9 Dec 2022 14:17:45 GMT
- Title: Frugal Reinforcement-based Active Learning
- Authors: Sebastien Deschamps and Hichem Sahbi
- Abstract summary: We propose a novel active learning approach for label-efficient training.
The proposed method is iterative and aims at minimizing a constrained objective function that mixes diversity, representativity and uncertainty criteria.
We also introduce a novel weighting mechanism based on reinforcement learning, which adaptively balances these criteria at each training iteration.
- Score: 12.18340575383456
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most of the existing learning models, particularly deep neural networks, are
reliant on large datasets whose hand-labeling is expensive and time demanding.
A current trend is to make the learning of these models frugal and less
dependent on large collections of labeled data. Among the existing solutions,
deep active learning is currently witnessing a major interest and its purpose
is to train deep networks using as few labeled samples as possible. However,
the success of active learning is highly dependent on how critical are these
samples when training models. In this paper, we devise a novel active learning
approach for label-efficient training. The proposed method is iterative and
aims at minimizing a constrained objective function that mixes diversity,
representativity and uncertainty criteria. The proposed approach is
probabilistic and unifies all these criteria in a single objective function
whose solution models the probability of relevance of samples (i.e., how
critical) when learning a decision function. We also introduce a novel
weighting mechanism based on reinforcement learning, which adaptively balances
these criteria at each training iteration, using a particular stateless
Q-learning model. Extensive experiments conducted on staple image
classification data, including Object-DOTA, show the effectiveness of our
proposed model w.r.t. several baselines including random, uncertainty and flat
as well as other work.
Related papers
- Forgetting, Ignorance or Myopia: Revisiting Key Challenges in Online Continual Learning [29.65600202138321]
In high-speed data stream environments, data do not pause to accommodate slow models.
Model's ignorance: the single-pass nature of OCL challenges models to learn effective features within constrained training time.
Model's myopia: the local learning nature of OCL leads the model to adopt overly simplified, task-specific features.
arXiv Detail & Related papers (2024-09-28T05:24:56Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - Model Uncertainty based Active Learning on Tabular Data using Boosted
Trees [0.4667030429896303]
Supervised machine learning relies on the availability of good labelled data for model training.
Active learning is a sub-field of machine learning which helps in obtaining the labelled data efficiently.
arXiv Detail & Related papers (2023-10-30T14:29:53Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Practical Active Learning with Model Selection for Small Data [13.128648437690224]
We develop a simple and fast method for practical active learning with model selection.
Our method is based on an underlying pool-based active learner for binary classification using support vector classification with a radial basis function kernel.
arXiv Detail & Related papers (2021-12-21T23:11:27Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
In continual learning, we store a subset of training examples (coreset) to be replayed later to alleviate catastrophic forgetting.
We propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration.
Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting.
arXiv Detail & Related papers (2021-06-02T11:39:25Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
We show that Bayesian neural networks are more efficient than ensemble based techniques in capturing uncertainty.
Our findings also reveal some key drawbacks of the ensemble techniques, which was recently shown to be more effective than Monte Carlo dropouts.
arXiv Detail & Related papers (2021-04-02T06:02:11Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - Active Learning in CNNs via Expected Improvement Maximization [2.0305676256390934]
"Dropout-based IMprOvementS" (DEIMOS) is a flexible and computationally-efficient approach to active learning.
Our results demonstrate that DEIMOS outperforms several existing baselines across multiple regression and classification tasks.
arXiv Detail & Related papers (2020-11-27T22:06:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.