A smart resource management mechanism with trust access control for
cloud computing environment
- URL: http://arxiv.org/abs/2212.05319v1
- Date: Sat, 10 Dec 2022 15:00:58 GMT
- Title: A smart resource management mechanism with trust access control for
cloud computing environment
- Authors: Sakshi Chhabra and Ashutosh Kumar Singh
- Abstract summary: This article suggests a conceptual framework for a workload management paradigm in cloud settings that is both safe and performance-efficient.
A resource management unit is used in this paradigm for energy and performing virtual machine allocation with efficiency.
A secure virtual machine management unit controls the resource management unit and is created to produce data on unlawful access or intercommunication.
- Score: 3.3504365823045044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The core of the computer business now offers subscription-based on-demand
services with the help of cloud computing. We may now share resources among
multiple users by using virtualization, which creates a virtual instance of a
computer system running in an abstracted hardware layer. It provides infinite
computing capabilities through its massive cloud datacenters, in contrast to
early distributed computing models, and has been incredibly popular in recent
years because to its continually growing infrastructure, user base, and hosted
data volume. This article suggests a conceptual framework for a workload
management paradigm in cloud settings that is both safe and
performance-efficient. A resource management unit is used in this paradigm for
energy and performing virtual machine allocation with efficiency, assuring the
safe execution of users' applications, and protecting against data breaches
brought on by unauthorised virtual machine access real-time. A secure virtual
machine management unit controls the resource management unit and is created to
produce data on unlawful access or intercommunication. Additionally, a workload
analyzer unit works simultaneously to estimate resource consumption data to
help the resource management unit be more effective during virtual machine
allocation. The suggested model functions differently to effectively serve the
same objective, including data encryption and decryption prior to transfer,
usage of trust access mechanism to prevent unauthorised access to virtual
machines, which creates extra computational cost overhead.
Related papers
- Ditto: Elastic Confidential VMs with Secure and Dynamic CPU Scaling [35.971391128345125]
"Elastic CVM" and the Worker vCPU design pave the way for more flexible and cost-effective confidential computing environments.
"Elastic CVM" and the Worker vCPU design not only optimize cloud resource utilization but also pave the way for more flexible and cost-effective confidential computing environments.
arXiv Detail & Related papers (2024-09-23T20:52:10Z) - VeriSplit: Secure and Practical Offloading of Machine Learning Inferences across IoT Devices [31.247069150077632]
Many Internet-of-Things (IoT) devices rely on cloud computation resources to perform machine learning inferences.
This is expensive and may raise privacy concerns for users.
We propose VeriSplit, a framework for offloading machine learning inferences to locally-available devices.
arXiv Detail & Related papers (2024-06-02T01:28:38Z) - Dynamic Resource Allocation for Virtual Machine Migration Optimization using Machine Learning [17.423579410846695]
The paragraph is grammatically correct and logically coherent.
It emphasizes the need for efficient data access and storage, as well as the utilization of cloud computing migration technology to prevent additional time delays.
arXiv Detail & Related papers (2024-03-20T14:13:44Z) - Scalable Federated Unlearning via Isolated and Coded Sharding [76.12847512410767]
Federated unlearning has emerged as a promising paradigm to erase the client-level data effect.
This paper proposes a scalable federated unlearning framework based on isolated sharding and coded computing.
arXiv Detail & Related papers (2024-01-29T08:41:45Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - The MIT Supercloud Dataset [3.375826083518709]
We introduce the MIT Supercloud dataset which aims to foster innovative AI/ML approaches to the analysis of large scale HPC and datacenter/cloud operations.
We provide detailed monitoring logs from the MIT Supercloud system, which include CPU and GPU usage by jobs, memory usage, file system logs, and physical monitoring data.
This paper discusses the details of the dataset, collection methodology, data availability, and discusses potential challenge problems being developed using this data.
arXiv Detail & Related papers (2021-08-04T13:06:17Z) - Machine Learning (ML)-Centric Resource Management in Cloud Computing: A
Review and Future Directions [22.779373079539713]
Infrastructure as a Service (I) is one of the most important and rapidly growing fields.
One of the most important aspects of cloud computing for I is resource management.
Machine learning is being used to handle a variety of resource management tasks.
arXiv Detail & Related papers (2021-05-09T08:03:58Z) - Power Modeling for Effective Datacenter Planning and Compute Management [53.41102502425513]
We discuss two classes of statistical power models designed and validated to be accurate, simple, interpretable and applicable to all hardware configurations and workloads.
We demonstrate that the proposed statistical modeling techniques, while simple and scalable, predict power with less than 5% Mean Absolute Percent Error (MAPE) for more than 95% diverse Power Distribution Units (more than 2000) using only 4 features.
arXiv Detail & Related papers (2021-03-22T21:22:51Z) - Towards AIOps in Edge Computing Environments [60.27785717687999]
This paper describes the system design of an AIOps platform which is applicable in heterogeneous, distributed environments.
It is feasible to collect metrics with a high frequency and simultaneously run specific anomaly detection algorithms directly on edge devices.
arXiv Detail & Related papers (2021-02-12T09:33:00Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
This paper introduces a novel distributed architecture for deep-learning-as-a-service.
It is able to preserve the user sensitive data while providing Cloud-based machine and deep learning services.
arXiv Detail & Related papers (2020-03-30T15:12:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.