A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal
- URL: http://arxiv.org/abs/2212.05767v7
- Date: Sat, 22 Jul 2023 13:05:21 GMT
- Title: A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal
- Authors: Ke Liang, Lingyuan Meng, Meng Liu, Yue Liu, Wenxuan Tu, Siwei Wang,
Sihang Zhou, Xinwang Liu, Fuchun Sun
- Abstract summary: Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
- Score: 57.8455911689554
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge graph reasoning (KGR), aiming to deduce new facts from existing
facts based on mined logic rules underlying knowledge graphs (KGs), has become
a fast-growing research direction. It has been proven to significantly benefit
the usage of KGs in many AI applications, such as question answering,
recommendation systems, and etc. According to the graph types, existing KGR
models can be roughly divided into three categories, i.e., static models,
temporal models, and multi-modal models. Early works in this domain mainly
focus on static KGR, and recent works try to leverage the temporal and
multi-modal information, which are more practical and closer to real-world.
However, no survey papers and open-source repositories comprehensively
summarize and discuss models in this important direction. To fill the gap, we
conduct a first survey for knowledge graph reasoning tracing from static to
temporal and then to multi-modal KGs. Concretely, the models are reviewed based
on bi-level taxonomy, i.e., top-level (graph types) and base-level (techniques
and scenarios). Besides, the performances, as well as datasets, are summarized
and presented. Moreover, we point out the challenges and potential
opportunities to enlighten the readers. The corresponding open-source
repository is shared on GitHub
https://github.com/LIANGKE23/Awesome-Knowledge-Graph-Reasoning.
Related papers
- A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.
Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.
To provide a better understanding of the literature, we systematically categorize the existing models based on our proposed taxonomy.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - Graph Domain Adaptation: Challenges, Progress and Prospects [61.9048172631524]
We propose graph domain adaptation as an effective knowledge-transfer paradigm across graphs.
GDA introduces a bunch of task-related graphs as source graphs and adapts the knowledge learnt from source graphs to the target graphs.
We outline the research status and challenges, propose a taxonomy, introduce the details of representative works, and discuss the prospects.
arXiv Detail & Related papers (2024-02-01T02:44:32Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Exploring Large Language Models for Knowledge Graph Completion [17.139056629060626]
We consider triples in knowledge graphs as text sequences and introduce an innovative framework called Knowledge Graph LLM.
Our technique employs entity and relation descriptions of a triple as prompts and utilizes the response for predictions.
Experiments on various benchmark knowledge graphs demonstrate that our method attains state-of-the-art performance in tasks such as triple classification and relation prediction.
arXiv Detail & Related papers (2023-08-26T16:51:17Z) - GSHOT: Few-shot Generative Modeling of Labeled Graphs [44.94210194611249]
We introduce the hitherto unexplored paradigm of few-shot graph generative modeling.
We develop GSHOT, a framework for few-shot labeled graph generative modeling.
GSHOT adapts to an unseen graph dataset through self-paced fine-tuning.
arXiv Detail & Related papers (2023-06-06T08:03:18Z) - Counterfactual Learning on Graphs: A Survey [34.47646823407408]
Graph neural networks (GNNs) have achieved great success in representation learning on graphs.
Counterfactual learning on graphs has shown promising results in alleviating these drawbacks.
Various approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs.
arXiv Detail & Related papers (2023-04-03T21:42:42Z) - Knowledge Distillation on Graphs: A Survey [43.60992916277081]
knowledge distillation on graphs (KDG) has been introduced to build a smaller yet effective model and exploit more knowledge from data.
We introduce KDG challenges and bases, then categorize and summarize existing works of KDG.
arXiv Detail & Related papers (2023-02-01T03:51:05Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z) - A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications [38.57023440288189]
We provide the first comprehensive survey for Pretrained Graph Models (PGMs)
We firstly present the limitations of graph representation learning and thus introduce the motivation for graph pre-training.
Next, we present the applications of PGMs in social recommendation and drug discovery.
arXiv Detail & Related papers (2022-02-16T07:00:52Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.