3DHumanGAN: 3D-Aware Human Image Generation with 3D Pose Mapping
- URL: http://arxiv.org/abs/2212.07378v2
- Date: Sun, 24 Sep 2023 22:05:37 GMT
- Title: 3DHumanGAN: 3D-Aware Human Image Generation with 3D Pose Mapping
- Authors: Zhuoqian Yang, Shikai Li, Wayne Wu, Bo Dai
- Abstract summary: 3DHumanGAN is a 3D-aware generative adversarial network that synthesizes photorealistic images of full-body humans.
We propose a novel generator architecture in which a 2D convolutional backbone is modulated by a 3D pose mapping network.
- Score: 37.14866512377012
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present 3DHumanGAN, a 3D-aware generative adversarial network that
synthesizes photorealistic images of full-body humans with consistent
appearances under different view-angles and body-poses. To tackle the
representational and computational challenges in synthesizing the articulated
structure of human bodies, we propose a novel generator architecture in which a
2D convolutional backbone is modulated by a 3D pose mapping network. The 3D
pose mapping network is formulated as a renderable implicit function
conditioned on a posed 3D human mesh. This design has several merits: i) it
leverages the strength of 2D GANs to produce high-quality images; ii) it
generates consistent images under varying view-angles and poses; iii) the model
can incorporate the 3D human prior and enable pose conditioning. Project page:
https://3dhumangan.github.io/.
Related papers
- En3D: An Enhanced Generative Model for Sculpting 3D Humans from 2D
Synthetic Data [36.51674664590734]
We present En3D, an enhanced izable scheme for high-qualityd 3D human avatars.
Unlike previous works that rely on scarce 3D datasets or limited 2D collections with imbalance viewing angles and pose priors, our approach aims to develop a zero-shot 3D capable of producing 3D humans.
arXiv Detail & Related papers (2024-01-02T12:06:31Z) - HumanLiff: Layer-wise 3D Human Generation with Diffusion Model [55.891036415316876]
Existing 3D human generative models mainly generate a clothed 3D human as an undetectable 3D model in a single pass.
We propose HumanLiff, the first layer-wise 3D human generative model with a unified diffusion process.
arXiv Detail & Related papers (2023-08-18T17:59:04Z) - MPM: A Unified 2D-3D Human Pose Representation via Masked Pose Modeling [59.74064212110042]
mpmcan handle multiple tasks including 3D human pose estimation, 3D pose estimation from cluded 2D pose, and 3D pose completion in a textocbfsingle framework.
We conduct extensive experiments and ablation studies on several widely used human pose datasets and achieve state-of-the-art performance on MPI-INF-3DHP.
arXiv Detail & Related papers (2023-06-29T10:30:00Z) - AG3D: Learning to Generate 3D Avatars from 2D Image Collections [96.28021214088746]
We propose a new adversarial generative model of realistic 3D people from 2D images.
Our method captures shape and deformation of the body and loose clothing by adopting a holistic 3D generator.
We experimentally find that our method outperforms previous 3D- and articulation-aware methods in terms of geometry and appearance.
arXiv Detail & Related papers (2023-05-03T17:56:24Z) - PanoHead: Geometry-Aware 3D Full-Head Synthesis in 360$^{\circ}$ [17.355141949293852]
Existing 3D generative adversarial networks (GANs) for 3D human head synthesis are either limited to near-frontal views or hard to preserve 3D consistency in large view angles.
We propose PanoHead, the first 3D-aware generative model that enables high-quality view-consistent image synthesis of full heads in $360circ$ with diverse appearance and detailed geometry.
arXiv Detail & Related papers (2023-03-23T06:54:34Z) - SHERF: Generalizable Human NeRF from a Single Image [59.10589479808622]
SHERF is the first generalizable Human NeRF model for recovering animatable 3D humans from a single input image.
We propose a bank of 3D-aware hierarchical features, including global, point-level, and pixel-aligned features, to facilitate informative encoding.
arXiv Detail & Related papers (2023-03-22T17:59:12Z) - AvatarGen: A 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is an unsupervised generation of 3D-aware clothed humans with various appearances and controllable geometries.
Our method can generate animatable 3D human avatars with high-quality appearance and geometry modeling.
It is competent for many applications, e.g., single-view reconstruction, re-animation, and text-guided synthesis/editing.
arXiv Detail & Related papers (2022-11-26T15:15:45Z) - EVA3D: Compositional 3D Human Generation from 2D Image Collections [27.70991135165909]
EVA3D is an unconditional 3D human generative model learned from 2D image collections only.
It can sample 3D humans with detailed geometry and render high-quality images (up to 512x256) without bells and whistles.
It achieves state-of-the-art 3D human generation performance regarding both geometry and texture quality.
arXiv Detail & Related papers (2022-10-10T17:59:31Z) - Inferring Implicit 3D Representations from Human Figures on Pictorial
Maps [1.0499611180329804]
We present an automated workflow to bring human figures, one of the most frequently appearing entities on pictorial maps, to the third dimension.
We first let a network consisting of fully connected layers estimate the depth coordinate of 2D pose points.
The gained 3D pose points are inputted together with 2D masks of body parts into a deep implicit surface network to infer 3D signed distance fields.
arXiv Detail & Related papers (2022-08-30T19:29:18Z) - 3D-Aware Semantic-Guided Generative Model for Human Synthesis [67.86621343494998]
This paper proposes a 3D-aware Semantic-Guided Generative Model (3D-SGAN) for human image synthesis.
Our experiments on the DeepFashion dataset show that 3D-SGAN significantly outperforms the most recent baselines.
arXiv Detail & Related papers (2021-12-02T17:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.