Giant spin ensembles in waveguide magnonics
- URL: http://arxiv.org/abs/2212.07605v1
- Date: Thu, 15 Dec 2022 03:32:49 GMT
- Title: Giant spin ensembles in waveguide magnonics
- Authors: Zi-Qi Wang, Yi-Pu Wang, Jiguang Yao, Rui-Chang Shen, Wei-Jiang Wu, Jie
Qian, Jie Li, Shi-Yao Zhu, J. Q. You
- Abstract summary: giant atom' physics is possible where the scale of atoms is comparable to or even greater than the wavelength of the light they interact with.
We experimentally demonstrate the giant spin ensemble (GSE), where amagnetic spin ensemble interacts twice with a meandering waveguide.
We find extraordinary phenomena that cannot be observed in conventional systems.
- Score: 10.214054515668789
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dipole approximation is usually employed to describe light-matter
interactions under ordinary conditions. With the development of artificial
atomic systems, `giant atom' physics is possible, where the scale of atoms is
comparable to or even greater than the wavelength of the light they interact
with, and the dipole approximation is no longer valid. It reveals interesting
physics impossible in small atoms and may offer useful applications. Here, we
experimentally demonstrate the giant spin ensemble (GSE), where a ferromagnetic
spin ensemble interacts twice with the meandering waveguide, and the coupling
strength between them can be continuously tuned from finite (coupled) to zero
(decoupled) by varying the frequency. In the nested configuration, we
investigate the collective behavior of two GSEs and find extraordinary
phenomena that cannot be observed in conventional systems. Our experiment
offers a new platform for `giant atom' physics.
Related papers
- Observation of string breaking on a (2 + 1)D Rydberg quantum simulator [59.63568901264298]
We report the observation of string breaking in synthetic quantum matter using a programmable quantum simulator.
Our work paves a way to explore phenomena in high-energy physics using programmable quantum simulators.
arXiv Detail & Related papers (2024-10-21T22:33:16Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Interaction between giant atoms in a one-dimensional structured
environment [0.0]
We study the interaction between two giant atoms mediated by a structured waveguide.
We show decoherence-free interaction is possible for different atom-cavity detunings.
Results may find applications in quantum simulation and quantum gate implementation.
arXiv Detail & Related papers (2022-08-08T12:47:09Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Chiral quantum optics with giant atoms [0.0]
In quantum optics, it is common to assume that atoms are point-like objects compared to the wavelength of the electromagnetic field they interact with.
Previous work has shown that superconducting qubits coupled to a one-dimensional waveguide can behave as such "giant atoms" and then interact through the waveguide without decohering.
Here, we show that this decoherence-free interaction is also possible when the coupling to the waveguide is chiral, i.e., when the coupling depends on the propagation direction of the light.
arXiv Detail & Related papers (2021-06-22T17:39:30Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum optics with giant atoms -- the first five years [0.0]
In quantum optics, it is common to assume atoms can be approximated as point-like compared to the wavelength of the light they interact with.
Recent advances in experiments with artificial atoms built from superconducting circuits have shown that this assumption can be violated.
arXiv Detail & Related papers (2019-12-30T17:12:21Z) - Waveguide Quantum Electrodynamics with Giant Superconducting Artificial
Atoms [40.456646238780195]
We employ an alternative architecture that realizes a giant atom by coupling small atoms to a waveguide at multiple, but well separated, discrete locations.
Our realization of giant atoms enables tunable atom-waveguide couplings with large on-off ratios and a coupling spectrum that can be engineered by device design.
arXiv Detail & Related papers (2019-12-27T16:45:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.