Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks
- URL: http://arxiv.org/abs/2212.08020v1
- Date: Wed, 23 Nov 2022 02:05:06 GMT
- Title: Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks
- Authors: Yunqi Wang, Yang Li, Qingjiang Shi, Yik-Chung Wu
- Abstract summary: We propose an edge-graph-neural-network (Edge-GNN) to learn the cooperative beamforming on the graph edges.
The proposed Edge-GNN achieves higher sum rate with much shorter computation time than state-of-the-art approaches.
- Score: 29.23937571816269
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cooperative beamforming design has been recognized as an effective approach
in modern wireless networks to meet the dramatically increasing demand of
various wireless data traffics. It is formulated as an optimization problem in
conventional approaches and solved iteratively in an instance-by-instance
manner. Recently, learning-based methods have emerged with real-time
implementation by approximating the mapping function from the problem instances
to the corresponding solutions. Among various neural network architectures,
graph neural networks (GNNs) can effectively utilize the graph topology in
wireless networks to achieve better generalization ability on unseen problem
sizes. However, the current GNNs are only equipped with the node-update
mechanism, which restricts it from modeling more complicated problems such as
the cooperative beamforming design, where the beamformers are on the graph
edges of wireless networks. To fill this gap, we propose an
edge-graph-neural-network (Edge-GNN) by incorporating an edge-update mechanism
into the GNN, which learns the cooperative beamforming on the graph edges.
Simulation results show that the proposed Edge-GNN achieves higher sum rate
with much shorter computation time than state-of-the-art approaches, and
generalizes well to different numbers of base stations and user equipments.
Related papers
- T-GAE: Transferable Graph Autoencoder for Network Alignment [79.89704126746204]
T-GAE is a graph autoencoder framework that leverages transferability and stability of GNNs to achieve efficient network alignment without retraining.
Our experiments demonstrate that T-GAE outperforms the state-of-the-art optimization method and the best GNN approach by up to 38.7% and 50.8%, respectively.
arXiv Detail & Related papers (2023-10-05T02:58:29Z) - Graph-based Multi-ODE Neural Networks for Spatio-Temporal Traffic
Forecasting [8.832864937330722]
Long-range traffic forecasting remains a challenging task due to the intricate and extensive-temporal correlations observed in traffic networks.
In this paper, we propose a architecture called Graph-based Multi-ODE Neural Networks (GRAM-ODE) which is designed with multiple connective ODE-GNN modules to learn better representations.
Our extensive set of experiments conducted on six real-world datasets demonstrate the superior performance of GRAM-ODE compared with state-of-the-art baselines.
arXiv Detail & Related papers (2023-05-30T02:10:42Z) - GNN at the Edge: Cost-Efficient Graph Neural Network Processing over
Distributed Edge Servers [24.109721494781592]
Graph Neural Networks (GNNs) are still under exploration, presenting a stark disparity to its broad edge adoptions.
This paper studies the cost optimization for distributed GNN processing over a multi-tier heterogeneous edge network.
We show that our approach achieves superior performance over de facto baselines with more than 95.8% cost eduction in a fast convergence speed.
arXiv Detail & Related papers (2022-10-31T13:03:16Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Graph Neural Network Based Node Deployment for Throughput Enhancement [20.56966053013759]
We propose a novel graph neural network (GNN) method for the network node deployment problem.
We show that an expressive GNN has the capacity to approximate both the function value and the traffic permutation, as a theoretic support for the proposed method.
arXiv Detail & Related papers (2022-08-19T08:06:28Z) - Graph Neural Networks for Wireless Communications: From Theory to
Practice [10.61745503150249]
Graph neural networks (GNNs) can effectively exploit the domain knowledge, i.e., the graph topology in wireless communication problems.
For theoretical guarantees, we prove that GNNs achieve near-optimal performance in wireless networks with much fewer training samples than traditional neural architectures.
For design guidelines, we propose a unified framework that is applicable to general design problems in wireless networks.
arXiv Detail & Related papers (2022-03-21T08:39:44Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
This paper studies the higher-level problem of enabling fast adaption of the power control policy to time-varying topologies.
We apply first-order meta-learning on data from multiple topologies with the aim of optimizing for a few-shot adaptation to new network configurations.
arXiv Detail & Related papers (2021-05-02T12:43:10Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Dynamic Graph: Learning Instance-aware Connectivity for Neural Networks [78.65792427542672]
Dynamic Graph Network (DG-Net) is a complete directed acyclic graph, where the nodes represent convolutional blocks and the edges represent connection paths.
Instead of using the same path of the network, DG-Net aggregates features dynamically in each node, which allows the network to have more representation ability.
arXiv Detail & Related papers (2020-10-02T16:50:26Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.