Improving self-supervised representation learning via sequential
adversarial masking
- URL: http://arxiv.org/abs/2212.08277v1
- Date: Fri, 16 Dec 2022 04:25:43 GMT
- Title: Improving self-supervised representation learning via sequential
adversarial masking
- Authors: Dylan Sam, Min Bai, Tristan McKinney, Li Erran Li
- Abstract summary: Masking-based pretext tasks extend beyond NLP, serving as useful pretraining objectives in computer vision.
We propose a new framework that generates masks in a sequential fashion with different constraints on the adversary.
- Score: 12.176299580413097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent methods in self-supervised learning have demonstrated that
masking-based pretext tasks extend beyond NLP, serving as useful pretraining
objectives in computer vision. However, existing approaches apply random or ad
hoc masking strategies that limit the difficulty of the reconstruction task
and, consequently, the strength of the learnt representations. We improve upon
current state-of-the-art work in learning adversarial masks by proposing a new
framework that generates masks in a sequential fashion with different
constraints on the adversary. This leads to improvements in performance on
various downstream tasks, such as classification on ImageNet100, STL10, and
CIFAR10/100 and segmentation on Pascal VOC. Our results further demonstrate the
promising capabilities of masking-based approaches for SSL in computer vision.
Related papers
- Semantic Refocused Tuning for Open-Vocabulary Panoptic Segmentation [42.020470627552136]
Open-vocabulary panoptic segmentation is an emerging task aiming to accurately segment the image into semantically meaningful masks.
mask classification is the main performance bottleneck for open-vocab panoptic segmentation.
We propose Semantic Refocused Tuning, a novel framework that greatly enhances open-vocab panoptic segmentation.
arXiv Detail & Related papers (2024-09-24T17:50:28Z) - Attention-Guided Masked Autoencoders For Learning Image Representations [16.257915216763692]
Masked autoencoders (MAEs) have established themselves as a powerful method for unsupervised pre-training for computer vision tasks.
We propose to inform the reconstruction process through an attention-guided loss function.
Our evaluations show that our pre-trained models learn better latent representations than the vanilla MAE.
arXiv Detail & Related papers (2024-02-23T08:11:25Z) - Understanding Masked Autoencoders From a Local Contrastive Perspective [80.57196495601826]
Masked AutoEncoder (MAE) has revolutionized the field of self-supervised learning with its simple yet effective masking and reconstruction strategies.
We introduce a new empirical framework, called Local Contrastive MAE, to analyze both reconstructive and contrastive aspects of MAE.
arXiv Detail & Related papers (2023-10-03T12:08:15Z) - Masking Improves Contrastive Self-Supervised Learning for ConvNets, and Saliency Tells You Where [63.61248884015162]
We aim to alleviate the burden of including masking operation into the contrastive-learning framework for convolutional neural networks.
We propose to explicitly take the saliency constraint into consideration in which the masked regions are more evenly distributed among the foreground and background.
arXiv Detail & Related papers (2023-09-22T09:58:38Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - Adversarial Masking for Self-Supervised Learning [81.25999058340997]
Masked image model (MIM) framework for self-supervised learning, ADIOS, is proposed.
It simultaneously learns a masking function and an image encoder using an adversarial objective.
It consistently improves on state-of-the-art self-supervised learning (SSL) methods on a variety of tasks and datasets.
arXiv Detail & Related papers (2022-01-31T10:23:23Z) - Self-Supervised Visual Representations Learning by Contrastive Mask
Prediction [129.25459808288025]
We propose a novel contrastive mask prediction (CMP) task for visual representation learning.
MaskCo contrasts region-level features instead of view-level features, which makes it possible to identify the positive sample without any assumptions.
We evaluate MaskCo on training datasets beyond ImageNet and compare its performance with MoCo V2.
arXiv Detail & Related papers (2021-08-18T02:50:33Z) - Effective Unsupervised Domain Adaptation with Adversarially Trained
Language Models [54.569004548170824]
We show that careful masking strategies can bridge the knowledge gap of masked language models.
We propose an effective training strategy by adversarially masking out those tokens which are harder to adversarial by the underlying.
arXiv Detail & Related papers (2020-10-05T01:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.