Fake it till you make it: Learning transferable representations from
synthetic ImageNet clones
- URL: http://arxiv.org/abs/2212.08420v2
- Date: Tue, 28 Mar 2023 08:11:53 GMT
- Title: Fake it till you make it: Learning transferable representations from
synthetic ImageNet clones
- Authors: Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, Yannis
Kalantidis
- Abstract summary: We show that ImageNet clones can close a large part of the gap between models produced by synthetic images and models trained with real images.
We show that models trained on synthetic images exhibit strong generalization properties and perform on par with models trained on real data for transfer.
- Score: 30.264601433216246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent image generation models such as Stable Diffusion have exhibited an
impressive ability to generate fairly realistic images starting from a simple
text prompt. Could such models render real images obsolete for training image
prediction models? In this paper, we answer part of this provocative question
by investigating the need for real images when training models for ImageNet
classification. Provided only with the class names that have been used to build
the dataset, we explore the ability of Stable Diffusion to generate synthetic
clones of ImageNet and measure how useful these are for training classification
models from scratch. We show that with minimal and class-agnostic prompt
engineering, ImageNet clones are able to close a large part of the gap between
models produced by synthetic images and models trained with real images, for
the several standard classification benchmarks that we consider in this study.
More importantly, we show that models trained on synthetic images exhibit
strong generalization properties and perform on par with models trained on real
data for transfer. Project page: https://europe.naverlabs.com/imagenet-sd/
Related papers
- Scaling Laws of Synthetic Images for Model Training ... for Now [54.43596959598466]
We study the scaling laws of synthetic images generated by state of the art text-to-image models.
We observe that synthetic images demonstrate a scaling trend similar to, but slightly less effective than, real images in CLIP training.
arXiv Detail & Related papers (2023-12-07T18:59:59Z) - Image Captions are Natural Prompts for Text-to-Image Models [70.30915140413383]
We analyze the relationship between the training effect of synthetic data and the synthetic data distribution induced by prompts.
We propose a simple yet effective method that prompts text-to-image generative models to synthesize more informative and diverse training data.
Our method significantly improves the performance of models trained on synthetic training data.
arXiv Detail & Related papers (2023-07-17T14:38:11Z) - Synthetic Image Data for Deep Learning [0.294944680995069]
Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models.
We show how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle.
arXiv Detail & Related papers (2022-12-12T20:28:13Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Identical Image Retrieval using Deep Learning [0.0]
We are using the BigTransfer Model, which is a state-of-art model itself.
We extract the key features and train on the K-Nearest Neighbor model to obtain the nearest neighbor.
The application of our model is to find similar images, which are hard to achieve through text queries within a low inference time.
arXiv Detail & Related papers (2022-05-10T13:34:41Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z) - Meta Internal Learning [88.68276505511922]
Internal learning for single-image generation is a framework, where a generator is trained to produce novel images based on a single image.
We propose a meta-learning approach that enables training over a collection of images, in order to model the internal statistics of the sample image more effectively.
Our results show that the models obtained are as suitable as single-image GANs for many common image applications.
arXiv Detail & Related papers (2021-10-06T16:27:38Z) - Counterfactual Generative Networks [59.080843365828756]
We propose to decompose the image generation process into independent causal mechanisms that we train without direct supervision.
By exploiting appropriate inductive biases, these mechanisms disentangle object shape, object texture, and background.
We show that the counterfactual images can improve out-of-distribution with a marginal drop in performance on the original classification task.
arXiv Detail & Related papers (2021-01-15T10:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.