An unfolding method based on conditional Invertible Neural Networks
(cINN) using iterative training
- URL: http://arxiv.org/abs/2212.08674v3
- Date: Wed, 10 Jan 2024 20:36:42 GMT
- Title: An unfolding method based on conditional Invertible Neural Networks
(cINN) using iterative training
- Authors: Mathias Backes, Anja Butter, Monica Dunford and Bogdan Malaescu
- Abstract summary: Generative networks like invertible neural networks(INN) enable a probabilistic unfolding.
We introduce the iterative conditional INN(IcINN) for unfolding that adjusts for deviations between simulated training samples and data.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The unfolding of detector effects is crucial for the comparison of data to
theory predictions. While traditional methods are limited to representing the
data in a low number of dimensions, machine learning has enabled new unfolding
techniques while retaining the full dimensionality. Generative networks like
invertible neural networks~(INN) enable a probabilistic unfolding, which map
individual events to their corresponding unfolded probability distribution. The
accuracy of such methods is however limited by how well simulated training
samples model the actual data that is unfolded. We introduce the iterative
conditional INN~(IcINN) for unfolding that adjusts for deviations between
simulated training samples and data. The IcINN unfolding is first validated on
toy data and then applied to pseudo-data for the $pp \to Z \gamma \gamma$
process.
Related papers
- A variational neural Bayes framework for inference on intractable posterior distributions [1.0801976288811024]
Posterior distributions of model parameters are efficiently obtained by feeding observed data into a trained neural network.
We show theoretically that our posteriors converge to the true posteriors in Kullback-Leibler divergence.
arXiv Detail & Related papers (2024-04-16T20:40:15Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Fast, Distribution-free Predictive Inference for Neural Networks with
Coverage Guarantees [25.798057062452443]
This paper introduces a novel, computationally-efficient algorithm for predictive inference (PI)
It requires no distributional assumptions on the data and can be computed faster than existing bootstrap-type methods for neural networks.
arXiv Detail & Related papers (2023-06-11T04:03:58Z) - Learning from Data with Noisy Labels Using Temporal Self-Ensemble [11.245833546360386]
Deep neural networks (DNNs) have an enormous capacity to memorize noisy labels.
Current state-of-the-art methods present a co-training scheme that trains dual networks using samples associated with small losses.
We propose a simple yet effective robust training scheme that operates by training only a single network.
arXiv Detail & Related papers (2022-07-21T08:16:31Z) - Reduced Robust Random Cut Forest for Out-Of-Distribution detection in
machine learning models [0.799536002595393]
Most machine learning-based regressors extract information from data collected via past observations of limited length to make predictions in the future.
When input to these trained models is data with significantly different statistical properties from data used for training, there is no guarantee of accurate prediction.
We introduce a novel approach for this detection process using a Reduced Robust Random Cut Forest data structure.
arXiv Detail & Related papers (2022-06-18T17:01:40Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Transformers Can Do Bayesian Inference [56.99390658880008]
We present Prior-Data Fitted Networks (PFNs)
PFNs leverage in-context learning in large-scale machine learning techniques to approximate a large set of posteriors.
We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems.
arXiv Detail & Related papers (2021-12-20T13:07:39Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Statistical model-based evaluation of neural networks [74.10854783437351]
We develop an experimental setup for the evaluation of neural networks (NNs)
The setup helps to benchmark a set of NNs vis-a-vis minimum-mean-square-error (MMSE) performance bounds.
This allows us to test the effects of training data size, data dimension, data geometry, noise, and mismatch between training and testing conditions.
arXiv Detail & Related papers (2020-11-18T00:33:24Z) - Theoretical Analysis of Self-Training with Deep Networks on Unlabeled
Data [48.4779912667317]
Self-training algorithms have been very successful for learning with unlabeled data using neural networks.
This work provides a unified theoretical analysis of self-training with deep networks for semi-supervised learning, unsupervised domain adaptation, and unsupervised learning.
arXiv Detail & Related papers (2020-10-07T19:43:55Z) - The Gaussian equivalence of generative models for learning with shallow
neural networks [30.47878306277163]
We study the performance of neural networks trained on data drawn from pre-trained generative models.
We provide three strands of rigorous, analytical and numerical evidence corroborating this equivalence.
These results open a viable path to the theoretical study of machine learning models with realistic data.
arXiv Detail & Related papers (2020-06-25T21:20:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.