Query Enhanced Knowledge-Intensive Conversation via Unsupervised Joint
Modeling
- URL: http://arxiv.org/abs/2212.09588v2
- Date: Fri, 26 May 2023 11:02:13 GMT
- Title: Query Enhanced Knowledge-Intensive Conversation via Unsupervised Joint
Modeling
- Authors: Mingzhu Cai, Siqi Bao, Xin Tian, Huang He, Fan Wang, Hua Wu
- Abstract summary: We propose an unsupervised query enhanced approach for knowledge-intensive conversations, namely QKConv.
QKConv is optimized through joint training, which produces the response by exploring multiple candidate queries and leveraging corresponding selected knowledge.
- Score: 35.27735234588822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an unsupervised query enhanced approach for
knowledge-intensive conversations, namely QKConv. There are three modules in
QKConv: a query generator, an off-the-shelf knowledge selector, and a response
generator. QKConv is optimized through joint training, which produces the
response by exploring multiple candidate queries and leveraging corresponding
selected knowledge. The joint training solely relies on the dialogue context
and target response, getting exempt from extra query annotations or knowledge
provenances. To evaluate the effectiveness of the proposed QKConv, we conduct
experiments on three representative knowledge-intensive conversation datasets:
conversational question-answering, task-oriented dialogue, and
knowledge-grounded conversation. Experimental results reveal that QKConv
performs better than all unsupervised methods across three datasets and
achieves competitive performance compared to supervised methods.
Related papers
- Conv-CoA: Improving Open-domain Question Answering in Large Language Models via Conversational Chain-of-Action [17.60243337898751]
We present a Conversational Chain-of-Action (Conv-CoA) framework for Open-domain Conversational Question Answering (OCQA)
Compared with literature, Conv-CoA addresses three major challenges: (i) unfaithful hallucination that is inconsistent with real-time or domain facts, (ii) weak reasoning performance in conversational scenarios, and (iii) unsatisfying performance in conversational information retrieval.
arXiv Detail & Related papers (2024-05-28T04:46:52Z) - PerkwE_COQA: Enhanced Persian Conversational Question Answering by combining contextual keyword extraction with Large Language Models [0.8057006406834466]
This paper presents a novel method to elevate the performance of Persian Conversational question-answering (CQA) systems.
It combines the strengths of Large Language Models (LLMs) with contextual keyword extraction.
The proposed method effectively handles implicit questions, delivers contextually relevant answers, and tackles complex questions that rely heavily on conversational context.
arXiv Detail & Related papers (2024-04-08T11:14:58Z) - Boosting Conversational Question Answering with Fine-Grained Retrieval-Augmentation and Self-Check [25.63538452425097]
We propose a conversation-level RAG approach, which incorporates fine-grained retrieval augmentation and self-check for conversational question answering.
In particular, our approach consists of three components, namely conversational question refiner, fine-grained retriever and self-check based response generator.
arXiv Detail & Related papers (2024-03-27T04:20:18Z) - Response Enhanced Semi-supervised Dialogue Query Generation [40.17161986495854]
We propose a semi-supervised learning framework -- SemiDQG -- to improve model performance with unlabeled conversations.
We first apply a similarity-based query selection strategy to select high-quality RA-generated pseudo queries.
We adopt the REINFORCE algorithm to further enhance QP, with RA-provided rewards as fine-grained training signals.
arXiv Detail & Related papers (2023-12-20T02:19:54Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
We present a flexible neural framework that can integrate contextual information from multiple channels.
We evaluate our model on the MSDialog dataset widely used for evaluating conversational response ranking tasks.
arXiv Detail & Related papers (2023-03-31T23:58:28Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
In spoken question answering, the systems are designed to answer questions from contiguous text spans within the related speech transcripts.
We propose a new Spoken Conversational Question Answering task (SCQA), aiming at enabling the systems to model complex dialogue flows.
Our main objective is to build the system to deal with conversational questions based on the audio recordings, and to explore the plausibility of providing more cues from different modalities with systems in information gathering.
arXiv Detail & Related papers (2022-04-29T17:56:59Z) - Self-supervised Dialogue Learning for Spoken Conversational Question
Answering [29.545937716796082]
In spoken conversational question answering (SCQA), the answer to the corresponding question is generated by retrieving and then analyzing a fixed spoken document, including multi-part conversations.
We introduce a self-supervised learning approach, including incoherence discrimination, insertion detection, and question prediction, to explicitly capture the coreference resolution and dialogue coherence.
Our proposed method provides more coherent, meaningful, and appropriate responses, yielding superior performance gains compared to the original pre-trained language models.
arXiv Detail & Related papers (2021-06-04T00:09:38Z) - Contextualized Attention-based Knowledge Transfer for Spoken
Conversational Question Answering [63.72278693825945]
Spoken conversational question answering (SCQA) requires machines to model complex dialogue flow.
We propose CADNet, a novel contextualized attention-based distillation approach.
We conduct extensive experiments on the Spoken-CoQA dataset and demonstrate that our approach achieves remarkable performance.
arXiv Detail & Related papers (2020-10-21T15:17:18Z) - Towards Data Distillation for End-to-end Spoken Conversational Question
Answering [65.124088336738]
We propose a new Spoken Conversational Question Answering task (SCQA)
SCQA aims at enabling QA systems to model complex dialogues flow given the speech utterances and text corpora.
Our main objective is to build a QA system to deal with conversational questions both in spoken and text forms.
arXiv Detail & Related papers (2020-10-18T05:53:39Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
We tackle conversational passage retrieval (ConvPR) with query reformulation integrated into a multi-stage ad-hoc IR system.
We propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting.
For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals.
For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model.
arXiv Detail & Related papers (2020-05-05T14:30:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.