Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images
- URL: http://arxiv.org/abs/2212.09589v1
- Date: Tue, 13 Dec 2022 11:59:09 GMT
- Title: Learning to Detect Good Keypoints to Match Non-Rigid Objects in RGB
Images
- Authors: Welerson Melo, Guilherme Potje, Felipe Cadar, Renato Martins and
Erickson R. Nascimento
- Abstract summary: We present a novel learned keypoint detection method designed to maximize the number of correct matches for the task of non-rigid image correspondence.
Our training framework uses true correspondences, obtained by matching annotated image pairs with a predefined descriptor extractor, as a ground-truth to train a convolutional neural network (CNN)
Experiments show that our method outperforms the state-of-the-art keypoint detector on real images of non-rigid objects by 20 p.p. on Mean Matching Accuracy.
- Score: 7.428474910083337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel learned keypoint detection method designed to maximize the
number of correct matches for the task of non-rigid image correspondence. Our
training framework uses true correspondences, obtained by matching annotated
image pairs with a predefined descriptor extractor, as a ground-truth to train
a convolutional neural network (CNN). We optimize the model architecture by
applying known geometric transformations to images as the supervisory signal.
Experiments show that our method outperforms the state-of-the-art keypoint
detector on real images of non-rigid objects by 20 p.p. on Mean Matching
Accuracy and also improves the matching performance of several descriptors when
coupled with our detection method. We also employ the proposed method in one
challenging realworld application: object retrieval, where our detector
exhibits performance on par with the best available keypoint detectors. The
source code and trained model are publicly available at
https://github.com/verlab/LearningToDetect SIBGRAPI 2022
Related papers
- On the Effectiveness of Dataset Alignment for Fake Image Detection [28.68129042301801]
A good detector should focus on the generative models fingerprints while ignoring image properties such as semantic content, resolution, file format, etc.
In this work, we argue that in addition to these algorithmic choices, we also require a well aligned dataset of real/fake images to train a robust detector.
For the family of LDMs, we propose a very simple way to achieve this: we reconstruct all the real images using the LDMs autoencoder, without any denoising operation. We then train a model to separate these real images from their reconstructions.
arXiv Detail & Related papers (2024-10-15T17:58:07Z) - Leveraging Semantic Cues from Foundation Vision Models for Enhanced Local Feature Correspondence [12.602194710071116]
This paper presents a new method that uses semantic cues from foundation vision model features to enhance local feature matching.
We present adapted versions of six existing descriptors, with an average increase in performance of 29% in camera localization.
arXiv Detail & Related papers (2024-10-12T13:45:26Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - Match me if you can: Semi-Supervised Semantic Correspondence Learning with Unpaired Images [76.47980643420375]
This paper builds on the hypothesis that there is an inherent data-hungry matter in learning semantic correspondences.
We demonstrate a simple machine annotator reliably enriches paired key points via machine supervision.
Our models surpass current state-of-the-art models on semantic correspondence learning benchmarks like SPair-71k, PF-PASCAL, and PF-WILLOW.
arXiv Detail & Related papers (2023-11-30T13:22:15Z) - Improving the matching of deformable objects by learning to detect
keypoints [6.4587163310833855]
We propose a novel learned keypoint detection method to increase the number of correct matches for the task of non-rigid image correspondence.
We train an end-to-end convolutional neural network (CNN) to find keypoint locations that are more appropriate to the considered descriptor.
Experiments demonstrate that our method enhances the Mean Matching Accuracy of numerous descriptors when used in conjunction with our detection method.
We also apply our method on the complex real-world task object retrieval where our detector performs on par with the finest keypoint detectors currently available for this task.
arXiv Detail & Related papers (2023-09-01T13:02:19Z) - Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks.
We propose a single-stage and standalone method, MOCA, which unifies both desired properties.
We achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols.
arXiv Detail & Related papers (2023-07-18T15:46:20Z) - Enhancing Deformable Local Features by Jointly Learning to Detect and
Describe Keypoints [8.390939268280235]
Local feature extraction is a standard approach in computer vision for tackling important tasks such as image matching and retrieval.
We propose DALF, a novel deformation-aware network for jointly detecting and describing keypoints.
Our approach also enhances the performance of two real-world applications: deformable object retrieval and non-rigid 3D surface registration.
arXiv Detail & Related papers (2023-04-02T18:01:51Z) - SISL:Self-Supervised Image Signature Learning for Splicing Detection and
Localization [11.437760125881049]
We propose self-supervised approach for training splicing detection/localization models from frequency transforms of images.
Our proposed model can yield similar or better performances on standard datasets without relying on labels or metadata.
arXiv Detail & Related papers (2022-03-15T12:26:29Z) - Learning Co-segmentation by Segment Swapping for Retrieval and Discovery [67.6609943904996]
The goal of this work is to efficiently identify visually similar patterns from a pair of images.
We generate synthetic training pairs by selecting object segments in an image and copy-pasting them into another image.
We show our approach provides clear improvements for artwork details retrieval on the Brueghel dataset.
arXiv Detail & Related papers (2021-10-29T16:51:16Z) - DetCo: Unsupervised Contrastive Learning for Object Detection [64.22416613061888]
Unsupervised contrastive learning achieves great success in learning image representations with CNN.
We present a novel contrastive learning approach, named DetCo, which fully explores the contrasts between global image and local image patches.
DetCo consistently outperforms supervised method by 1.6/1.2/1.0 AP on Mask RCNN-C4/FPN/RetinaNet with 1x schedule.
arXiv Detail & Related papers (2021-02-09T12:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.