Thermometry of Strongly Correlated Fermionic Quantum Systems using
Impurity Probes
- URL: http://arxiv.org/abs/2212.09618v2
- Date: Fri, 28 Apr 2023 09:59:31 GMT
- Title: Thermometry of Strongly Correlated Fermionic Quantum Systems using
Impurity Probes
- Authors: George Mihailescu, Steve Campbell, Andrew K. Mitchell
- Abstract summary: We study quantum impurity models as a platform for quantum thermometry.
A single quantum spin-1/2 impurity is coupled to an explicit, structured, fermionic thermal environment.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study quantum impurity models as a platform for quantum thermometry. A
single quantum spin-1/2 impurity is coupled to an explicit, structured,
fermionic thermal environment which we refer to as the environment or bath. We
critically assess the thermometric capabilities of the impurity as a probe,
when its coupling to the environment is of Ising or Kondo exchange type. In the
Ising case, we find sensitivity equivalent to that of an idealized two-level
system, with peak thermometric performance obtained at a temperature that
scales linearly in the applied control field, independent of the coupling
strength and environment spectral features. By contrast, a richer thermometric
response can be realized for Kondo impurities, since strong probe-environment
entanglement can then develop. At low temperatures, we uncover a regime with a
universal thermometric response that is independent of microscopic details,
controlled only by the low-energy spectral features of the environment. The
many-body entanglement that develops in this regime means that low-temperature
thermometry with a weakly applied control field is inherently less sensitive,
while optimal sensitivity is recovered by suppressing the entanglement with
stronger fields.
Related papers
- Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Thermometry by correlated dephasing of impurities in a 1D Fermi gas [0.0]
We investigate the pure dephasing dynamics of two static impurity qubits embedded within a common Fermi gas.
We show that the impurities become correlated via retarded interactions of the Ruderman-Kittel-Kasuya-Yosida type.
These correlations can provide a metrological advantage, enhancing the sensitivity of the two-qubit thermometer beyond that of two independent impurities.
arXiv Detail & Related papers (2023-07-19T16:55:35Z) - Multi-spin probes for thermometry in the strong-coupling regime [0.0]
We study the sensitivity of thermometric probes composed of $N$ spins coupled to a sample prepared at temperature $T$.
We find that for single-spin probes $(N = 1)$, temperature sensitivity decreases in the regime of weak-to-intermediate coupling strength.
As the coupling increases we observe much higher sensitivity of the probe in the low-temperature regime.
arXiv Detail & Related papers (2023-07-09T17:23:57Z) - Energy measurements remain thermometrically optimal beyond weak coupling [0.0]
We develop a general perturbative theory of finite-coupling quantum thermometry up to second order in probe-sample interaction.
By assumption, the probe and sample are in thermal equilibrium, so the probe is described by the mean-force Gibbs state.
We prove that the ultimate thermometric precision can be achieved - to second order in the coupling.
arXiv Detail & Related papers (2023-02-06T19:01:07Z) - Low-temperature quantum thermometry boosted by coherence generation [0.0]
We present a method for low-temperature measurement that improves thermal range and sensitivity by generating quantum coherence in a thermometer probe.
We use a two-level quantum system, or qubit, as our probe and prevent direct probe access to the sample by introducing a set of ancilla qubits as an interface.
arXiv Detail & Related papers (2022-11-10T10:12:58Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Uhlmann Fidelity and Fidelity Susceptibility for Integrable Spin Chains
at Finite Temperature: Exact Results [68.8204255655161]
We show that the proper inclusion of the odd parity subspace leads to the enhancement of maximal fidelity susceptibility in the intermediate range of temperatures.
The correct low-temperature behavior is captured by an approximation involving the two lowest many-body energy eigenstates.
arXiv Detail & Related papers (2021-05-11T14:08:02Z) - Optimal control of a nitrogen-vacancy spin ensemble in diamond for
sensing in the pulsed domain [52.77024349608834]
Defects in solid state materials provide an ideal platform for quantum sensing.
Control of such an ensemble is challenging due to the spatial variation in both the defect energy levels and in any control field across a macroscopic sample.
We experimentally demonstrate that we can overcome these challenges using Floquet theory and optimal control optimization methods.
arXiv Detail & Related papers (2021-01-25T13:01:05Z) - Adiabatic Sensing Technique for Optimal Temperature Estimation using
Trapped Ions [64.31011847952006]
We propose an adiabatic method for optimal phonon temperature estimation using trapped ions.
The relevant information of the phonon thermal distributions can be transferred to the collective spin-degree of freedom.
We show that each of the thermal state probabilities is adiabatically mapped onto the respective collective spin-excitation configuration.
arXiv Detail & Related papers (2020-12-16T12:58:08Z) - Out-of-equilibrium quantum thermodynamics in the Bloch sphere:
temperature and internal entropy production [68.8204255655161]
An explicit expression for the temperature of an open two-level quantum system is obtained.
This temperature coincides with the environment temperature if the system reaches thermal equilibrium with a heat reservoir.
We show that within this theoretical framework the total entropy production can be partitioned into two contributions.
arXiv Detail & Related papers (2020-04-09T23:06:43Z) - In situ thermometry of a cold Fermi gas via dephasing impurities [0.0]
We show that the temperature of a non-interacting Fermi gas can be accurately inferred from the non-equilibrium dynamics of impurities immersed within it.
We also discover an intriguing trade-off between measurement time and thermometric precision that is controlled by the impurity-gas coupling.
arXiv Detail & Related papers (2020-04-06T18:02:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.