Continuous Semi-Supervised Nonnegative Matrix Factorization
- URL: http://arxiv.org/abs/2212.09858v1
- Date: Mon, 19 Dec 2022 21:07:27 GMT
- Title: Continuous Semi-Supervised Nonnegative Matrix Factorization
- Authors: Michael R. Lindstrom, Xiaofu Ding, Feng Liu, Anand Somayajula, Deanna
Needell
- Abstract summary: Nonnegative matrix factorization can be used to automatically detect topics within a corpus in an unsupervised fashion.
We show this factorization can be combined with regression on a continuous response variable.
- Score: 8.303018940526417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonnegative matrix factorization can be used to automatically detect topics
within a corpus in an unsupervised fashion. The technique amounts to an
approximation of a nonnegative matrix as the product of two nonnegative
matrices of lower rank. In this paper, we show this factorization can be
combined with regression on a continuous response variable. In practice, the
method performs better than regression done after topics are identified and
retrains interpretability.
Related papers
- Neural incomplete factorization: learning preconditioners for the conjugate gradient method [2.899792823251184]
We develop a data-driven approach to accelerate the generation of effective preconditioners.
We replace the typically hand-engineered preconditioners by the output of graph neural networks.
Our method generates an incomplete factorization of the matrix and is, therefore, referred to as neural incomplete factorization (NeuralIF)
arXiv Detail & Related papers (2023-05-25T11:45:46Z) - Memory-Efficient Backpropagation through Large Linear Layers [107.20037639738433]
In modern neural networks like Transformers, linear layers require significant memory to store activations during backward pass.
This study proposes a memory reduction approach to perform backpropagation through linear layers.
arXiv Detail & Related papers (2022-01-31T13:02:41Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Adversarially-Trained Nonnegative Matrix Factorization [77.34726150561087]
We consider an adversarially-trained version of the nonnegative matrix factorization.
In our formulation, an attacker adds an arbitrary matrix of bounded norm to the given data matrix.
We design efficient algorithms inspired by adversarial training to optimize for dictionary and coefficient matrices.
arXiv Detail & Related papers (2021-04-10T13:13:17Z) - Beyond Procrustes: Balancing-Free Gradient Descent for Asymmetric
Low-Rank Matrix Sensing [36.96922859748537]
Low-rank matrix estimation plays a central role in various applications across science and engineering.
Existing approaches rely on adding a metric regularization term to balance the scale of the two matrix factors.
In this paper, we provide a theoretical justification for the performance in recovering a low-rank matrix from a small number of linear measurements.
arXiv Detail & Related papers (2021-01-13T15:03:52Z) - Tangent Space Based Alternating Projections for Nonnegative Low Rank
Matrix Approximation [22.96292865984433]
In the nonnegative low rank matrix approximation method, the projection onto the manifold of fixed rank matrices can be expensive as the singular value decomposition is required.
We propose to use the tangent space of the point in the manifold to approximate the projection onto the manifold in order to reduce the computational cost.
arXiv Detail & Related papers (2020-09-02T05:25:16Z) - Robust Low-rank Matrix Completion via an Alternating Manifold Proximal
Gradient Continuation Method [47.80060761046752]
Robust low-rank matrix completion (RMC) has been studied extensively for computer vision, signal processing and machine learning applications.
This problem aims to decompose a partially observed matrix into the superposition of a low-rank matrix and a sparse matrix, where the sparse matrix captures the grossly corrupted entries of the matrix.
A widely used approach to tackle RMC is to consider a convex formulation, which minimizes the nuclear norm of the low-rank matrix (to promote low-rankness) and the l1 norm of the sparse matrix (to promote sparsity).
In this paper, motivated by some recent works on low-
arXiv Detail & Related papers (2020-08-18T04:46:22Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
We propose a new non scalable low-rank regularizer called "nuclear Frobenius norm" regularizer, which is adaptive and sound.
It bypasses the computation of singular values and allows fast optimization by algorithms.
It obtains state-of-the-art recovery performance while being the fastest in existing matrix learning methods.
arXiv Detail & Related papers (2020-08-14T18:47:58Z) - Dual T: Reducing Estimation Error for Transition Matrix in Label-noise
Learning [157.2709657207203]
Existing methods for estimating the transition matrix rely heavily on estimating the noisy class posterior.
We introduce an intermediate class to avoid directly estimating the noisy class posterior.
By this intermediate class, the original transition matrix can then be factorized into the product of two easy-to-estimate transition matrices.
arXiv Detail & Related papers (2020-06-14T05:48:20Z) - A Sparsity Inducing Nuclear-Norm Estimator (SpINNEr) for Matrix-Variate
Regression in Brain Connectivity Analysis [0.13821857257153802]
In medical applications, regressors are often in a form of multi-dimensional arrays.
We present an alternative approach - regularized matrix regression.
SpINNEr is applied to investigate associations between HIV-related outcomes and functional connectivity in the human brain.
arXiv Detail & Related papers (2020-01-30T20:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.