Self-Pair: Synthesizing Changes from Single Source for Object Change
Detection in Remote Sensing Imagery
- URL: http://arxiv.org/abs/2212.10236v1
- Date: Tue, 20 Dec 2022 13:26:42 GMT
- Title: Self-Pair: Synthesizing Changes from Single Source for Object Change
Detection in Remote Sensing Imagery
- Authors: Minseok Seo, Hakjin Lee, Yongjin Jeon, Junghoon Seo,
- Abstract summary: We train a change detector using two spatially unrelated images with corresponding semantic labels such as building.
We show that manipulating the source image as an after-image is crucial to the performance of change detection.
Our method outperforms existing methods based on single-temporal supervision.
- Score: 6.586756080460231
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For change detection in remote sensing, constructing a training dataset for
deep learning models is difficult due to the requirements of bi-temporal
supervision. To overcome this issue, single-temporal supervision which treats
change labels as the difference of two semantic masks has been proposed. This
novel method trains a change detector using two spatially unrelated images with
corresponding semantic labels such as building. However, training on unpaired
datasets could confuse the change detector in the case of pixels that are
labeled unchanged but are visually significantly different. In order to
maintain the visual similarity in unchanged area, in this paper, we emphasize
that the change originates from the source image and show that manipulating the
source image as an after-image is crucial to the performance of change
detection. Extensive experiments demonstrate the importance of maintaining
visual information between pre- and post-event images, and our method
outperforms existing methods based on single-temporal supervision. code is
available at https://github.com/seominseok0429/Self-Pair-for-Change-Detection.
Related papers
- Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning [71.14084801851381]
Change captioning aims to succinctly describe the semantic change between a pair of similar images.
Most existing methods directly capture the difference between them, which risk obtaining error-prone difference features.
We propose a distractors-immune representation learning network that correlates the corresponding channels of two image representations.
arXiv Detail & Related papers (2024-07-16T13:00:33Z) - Single-Temporal Supervised Learning for Universal Remote Sensing Change Detection [21.622442722863028]
We propose single-temporal supervised learning (STAR) for universal remote sensing change detection.
Star enables us to train a high-accuracy change detector only using unpaired labeled images.
ChangeStar2 achieves state-of-the-art performances on eight public remote sensing change detection datasets.
arXiv Detail & Related papers (2024-06-22T00:03:21Z) - Segment Any Change [64.23961453159454]
We propose a new type of change detection model that supports zero-shot prediction and generalization on unseen change types and data distributions.
AnyChange is built on the segment anything model (SAM) via our training-free adaptation method, bitemporal latent matching.
We also propose a point query mechanism to enable AnyChange's zero-shot object-centric change detection capability.
arXiv Detail & Related papers (2024-02-02T07:17:39Z) - MS-Former: Memory-Supported Transformer for Weakly Supervised Change
Detection with Patch-Level Annotations [50.79913333804232]
We propose a memory-supported transformer (MS-Former) for weakly supervised change detection.
MS-Former consists of a bi-directional attention block (BAB) and a patch-level supervision scheme (PSS)
Experimental results on three benchmark datasets demonstrate the effectiveness of our proposed method in the change detection task.
arXiv Detail & Related papers (2023-11-16T09:57:29Z) - Learning Transformations To Reduce the Geometric Shift in Object
Detection [60.20931827772482]
We tackle geometric shifts emerging from variations in the image capture process.
We introduce a self-training approach that learns a set of geometric transformations to minimize these shifts.
We evaluate our method on two different shifts, i.e., a camera's field of view (FoV) change and a viewpoint change.
arXiv Detail & Related papers (2023-01-13T11:55:30Z) - dual unet:a novel siamese network for change detection with cascade
differential fusion [4.651756476458979]
We propose a novel Siamese neural network for change detection task, namely Dual-UNet.
In contrast to previous individually encoded the bitemporal images, we design an encoder differential-attention module to focus on the spatial difference relationships of pixels.
Experiments demonstrate that the proposed approach consistently outperforms the most advanced methods on popular seasonal change detection datasets.
arXiv Detail & Related papers (2022-08-12T14:24:09Z) - Unsupervised Change Detection Based on Image Reconstruction Loss [6.604255432427447]
We propose unsupervised change detection based on image reconstruction loss using only unlabeled single temporal single image.
Our change detector showed significant performance in various change detection benchmark datasets even though only a single temporal single source image was used.
arXiv Detail & Related papers (2022-04-04T01:40:34Z) - Unsupervised Pretraining for Object Detection by Patch Reidentification [72.75287435882798]
Unsupervised representation learning achieves promising performances in pre-training representations for object detectors.
This work proposes a simple yet effective representation learning method for object detection, named patch re-identification (Re-ID)
Our method significantly outperforms its counterparts on COCO in all settings, such as different training iterations and data percentages.
arXiv Detail & Related papers (2021-03-08T15:13:59Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
It is challenging to train a robust object detector when annotated data is scarce.
Existing approaches to tackle this problem include semi-supervised learning that interpolates labeled data from unlabeled data.
We introduce an offline data augmentation method for object detection, which semantically interpolates the training data with novel views.
arXiv Detail & Related papers (2021-03-04T06:31:06Z) - Self-supervised Multisensor Change Detection [14.191073951237772]
We revisit multisensor analysis in context of self-supervised change detection in bi-temporal satellite images.
Recent development of self-supervised learning methods has shown that some of them can even work with only few images.
Motivated by this, in this work we propose a method for multi-sensor change detection using only the unlabeled target bi-temporal images.
arXiv Detail & Related papers (2021-02-12T12:31:10Z) - DASNet: Dual attentive fully convolutional siamese networks for change
detection of high resolution satellite images [17.839181739760676]
The research objective is to identity the change information of interest and filter out the irrelevant change information as interference factors.
Recently, the rise of deep learning has provided new tools for change detection, which have yielded impressive results.
We propose a new method, namely, dual attentive fully convolutional Siamese networks (DASNet) for change detection in high-resolution images.
arXiv Detail & Related papers (2020-03-07T16:57:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.