Quantum simulation of two-dimensional $\mathrm{U(1)}$ gauge theory in
Rydberg atom arrays
- URL: http://arxiv.org/abs/2212.10863v1
- Date: Wed, 21 Dec 2022 09:09:56 GMT
- Title: Quantum simulation of two-dimensional $\mathrm{U(1)}$ gauge theory in
Rydberg atom arrays
- Authors: Zheng Zhou, Zheng Yan, Changle Liu, Yan Chen, and Xue-Feng Zhang
- Abstract summary: We propose a simple realization of $mathrmU(1)$ gauge theory on triangular lattice Rydberg atom arrays.
Within experimentally accessible range, we find that the effective model well simulates various aspects of the $mathrmU(1)$ gauge theory.
- Score: 10.469381940915717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Simulating $\mathrm{U(1)}$ quantum gauge theories with spatial dimension
greater than one is of great physical significance yet has not been achieved
experimentally. Here we propose a simple realization of $\mathrm{U(1)}$ gauge
theory on triangular lattice Rydberg atom arrays. Within experimentally
accessible range, we find that the effective model well simulates various
aspects of the $\mathrm{U(1)}$ gauge theory, such as emergence of topological
sectors, incommensurability, and the deconfined Rokhsar-Kivelson point. Our
proposal is easy to implement experimentally and exhibits pronounced quantum
dynamics compared with previous proposals realizing $\mathrm{U(1)}$ and
$\mathbb Z_2$ gauge theories.
Related papers
- Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Large-Scale $2+1$D $\mathrm{U}(1)$ Gauge Theory with Dynamical Matter in
a Cold-Atom Quantum Simulator [3.1192594881563127]
A major driver of quantum-simulator technology is the prospect of probing high-energy phenomena in synthetic quantum matter setups at a high level of control and tunability.
Here, we propose an experimentally feasible realization of a large-scale $2+1$D $mathrmU(1)$ gauge theory with dynamical matter and gauge fields in a cold-atom quantum simulator with spinless bosons.
arXiv Detail & Related papers (2022-11-02T18:00:00Z) - Suppression of $1/f$ noise in quantum simulators of gauge theories [0.0]
We show that the recently developed method of textitlinear gauge protection suppresses the growth of gauge violations due to $1/fbeta$ noise as $1/Vbeta$.
Our findings are of immediate applicability in modern analog quantum simulators and digital NISQ devices.
arXiv Detail & Related papers (2022-10-12T18:00:01Z) - U(1) Fields from Qubits: an Approach via D-theory Algebra [0.0]
A new quantum link microstructure was proposed for the lattice quantum chromodynamics (QCD) Hamiltonian.
This formalism provides a general framework for building lattice field theory algorithms for quantum computing.
arXiv Detail & Related papers (2022-01-07T11:45:22Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Lattice Quantum Chromodynamics and Electrodynamics on a Universal
Quantum Computer [0.033842793760651545]
We show a complete instruction-by-instruction to simulate lattice gauge theories on a quantum computer.
We show that lattice gauge theories in any spatial dimension can be simulated using $tildeO(T3/2N3/2Lambda/epsilon1/2)$ T gates.
arXiv Detail & Related papers (2021-07-27T12:27:39Z) - Simulating Quantum Mechanics with a $\theta$-term and an 't Hooft
Anomaly on a Synthetic Dimension [2.710787786741731]
A topological $theta$-term in gauge theories, including quantum chromodynamics in 3+1 dimensions, gives rise to a sign problem that makes classical Monte Carlo simulations impractical.
Quantum simulations are not subject to such sign problems and are a promising approach to studying these theories in the future.
We propose an experimental scheme for the real-time simulation of a particle on a circle with a $theta$-term and a $mathbbZ_n$ potential using a synthetic dimension encoded in a Rydberg atom.
arXiv Detail & Related papers (2021-07-16T18:34:46Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z) - Quantum Algorithms for Simulating the Lattice Schwinger Model [63.18141027763459]
We give scalable, explicit digital quantum algorithms to simulate the lattice Schwinger model in both NISQ and fault-tolerant settings.
In lattice units, we find a Schwinger model on $N/2$ physical sites with coupling constant $x-1/2$ and electric field cutoff $x-1/2Lambda$.
We estimate observables which we cost in both the NISQ and fault-tolerant settings by assuming a simple target observable---the mean pair density.
arXiv Detail & Related papers (2020-02-25T19:18:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.