Advanced Baseline for 3D Human Pose Estimation: A Two-Stage Approach
- URL: http://arxiv.org/abs/2212.11344v1
- Date: Wed, 21 Dec 2022 20:31:39 GMT
- Title: Advanced Baseline for 3D Human Pose Estimation: A Two-Stage Approach
- Authors: Zichen Gui, Jungang Luo
- Abstract summary: This paper focuses on the 2D-to-3D lifting process in the two-stage methods and proposed a more advanced baseline model for 3D human pose estimation.
Our improvements include optimization of machine learning models and multiple parameters, as well as introduction of a weighted loss to the training model.
- Score: 1.52292571922932
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Human pose estimation has been widely applied in various industries. While
recent decades have witnessed the introduction of many advanced two-dimensional
(2D) human pose estimation solutions, three-dimensional (3D) human pose
estimation is still an active research field in computer vision. Generally
speaking, 3D human pose estimation methods can be divided into two categories:
single-stage and two-stage. In this paper, we focused on the 2D-to-3D lifting
process in the two-stage methods and proposed a more advanced baseline model
for 3D human pose estimation, based on the existing solutions. Our improvements
include optimization of machine learning models and multiple parameters, as
well as introduction of a weighted loss to the training model. Finally, we used
the Human3.6M benchmark to test the final performance and it did produce
satisfactory results.
Related papers
- ManiPose: Manifold-Constrained Multi-Hypothesis 3D Human Pose Estimation [54.86887812687023]
Most 3D-HPE methods rely on regression models, which assume a one-to-one mapping between inputs and outputs.
We propose ManiPose, a novel manifold-constrained multi-hypothesis model capable of proposing multiple candidate 3D poses for each 2D input.
Unlike previous multi-hypothesis approaches, our solution is completely supervised and does not rely on complex generative models.
arXiv Detail & Related papers (2023-12-11T13:50:10Z) - EVOPOSE: A Recursive Transformer For 3D Human Pose Estimation With
Kinematic Structure Priors [72.33767389878473]
We propose a transformer-based model EvoPose to introduce the human body prior knowledge for 3D human pose estimation effectively.
A Structural Priors Representation (SPR) module represents human priors as structural features carrying rich body patterns.
A Recursive Refinement (RR) module is applied to the 3D pose outputs by utilizing estimated results and further injects human priors simultaneously.
arXiv Detail & Related papers (2023-06-16T04:09:16Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low
Dimensional Space [14.81199315166042]
We propose a method for 3D human pose estimation that mixes multi-dimensional re-projection into supervised learning.
Based on the estimation results for the dataset Human3.6M, our approach outperforms many state-of-the-art methods both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-06-04T00:51:00Z) - Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep
Learning Perspective [69.44384540002358]
We provide a comprehensive and holistic 2D-to-3D perspective to tackle this problem.
We categorize the mainstream and milestone approaches since the year 2014 under unified frameworks.
We also summarize the pose representation styles, benchmarks, evaluation metrics, and the quantitative performance of popular approaches.
arXiv Detail & Related papers (2021-04-23T11:07:07Z) - Deep Learning-Based Human Pose Estimation: A Survey [66.01917727294163]
Human pose estimation has drawn increasing attention during the past decade.
It has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality.
Recent deep learning-based solutions have achieved high performance in human pose estimation.
arXiv Detail & Related papers (2020-12-24T18:49:06Z) - Residual Pose: A Decoupled Approach for Depth-based 3D Human Pose
Estimation [18.103595280706593]
We leverage recent advances in reliable 2D pose estimation with CNN to estimate the 3D pose of people from depth images.
Our approach achieves very competitive results both in accuracy and speed on two public datasets.
arXiv Detail & Related papers (2020-11-10T10:08:13Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z) - A review of 3D human pose estimation algorithms for markerless motion
capture [0.0]
We review the leading human pose estimation methods of the past five years, focusing on metrics, benchmarks and method structures.
We propose a taxonomy based on accuracy, speed and robustness that we use to classify de methods and derive directions for future research.
arXiv Detail & Related papers (2020-10-13T15:07:01Z) - Cascaded deep monocular 3D human pose estimation with evolutionary
training data [76.3478675752847]
Deep representation learning has achieved remarkable accuracy for monocular 3D human pose estimation.
This paper proposes a novel data augmentation method that is scalable for massive amount of training data.
Our method synthesizes unseen 3D human skeletons based on a hierarchical human representation and synthesizings inspired by prior knowledge.
arXiv Detail & Related papers (2020-06-14T03:09:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.