The Inverse of Exact Renormalization Group Flows as Statistical Inference
- URL: http://arxiv.org/abs/2212.11379v2
- Date: Wed, 1 May 2024 14:30:57 GMT
- Title: The Inverse of Exact Renormalization Group Flows as Statistical Inference
- Authors: David S. Berman, Marc S. Klinger,
- Abstract summary: We build on the view of the Exact Renormalization Group (ERG) as an instantiation of Optimal Transport.
We provide a new information theoretic perspective for understanding the ERG through the intermediary of Bayesian Statistical Inference.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We build on the view of the Exact Renormalization Group (ERG) as an instantiation of Optimal Transport described by a functional convection-diffusion equation. We provide a new information theoretic perspective for understanding the ERG through the intermediary of Bayesian Statistical Inference. This connection is facilitated by the Dynamical Bayesian Inference scheme, which encodes Bayesian inference in the form of a one parameter family of probability distributions solving an integro-differential equation derived from Bayes' law. In this note, we demonstrate how the Dynamical Bayesian Inference equation is, itself, equivalent to a diffusion equation which we dub Bayesian Diffusion. Identifying the features that define Bayesian Diffusion, and mapping them onto the features that define the ERG, we obtain a dictionary outlining how renormalization can be understood as the inverse of statistical inference.
Related papers
- Rectified Diffusion Guidance for Conditional Generation [62.00207951161297]
We revisit the theory behind CFG and rigorously confirm that the improper configuration of the combination coefficients (i.e., the widely used summing-to-one version) brings about expectation shift of the generative distribution.
We propose ReCFG with a relaxation on the guidance coefficients such that denoising with ReCFG strictly aligns with the diffusion theory.
That way the rectified coefficients can be readily pre-computed via traversing the observed data, leaving the sampling speed barely affected.
arXiv Detail & Related papers (2024-10-24T13:41:32Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Variational DAG Estimation via State Augmentation With Stochastic Permutations [16.57658783816741]
Estimating the structure of a Bayesian network from observational data is a statistically and computationally hard problem.
From a probabilistic inference perspective, the main challenges are (i) representing distributions over graphs that satisfy the DAG constraint and (ii) estimating a posterior over the underlying space.
We propose an approach that addresses these challenges by formulating a joint distribution on an augmented space of DAGs and permutations.
arXiv Detail & Related papers (2024-02-04T23:51:04Z) - Conditional Stochastic Interpolation for Generative Learning [5.0061421661196865]
We propose a conditional conditional (CSI) method for learning conditional distributions.
We derive explicit expressions of the conditional drift and score functions in terms of conditional expectations.
We illustrate the application of CSI on image generation using a benchmark image dataset.
arXiv Detail & Related papers (2023-12-09T13:53:35Z) - Causal Modeling with Stationary Diffusions [89.94899196106223]
We learn differential equations whose stationary densities model a system's behavior under interventions.
We show that they generalize to unseen interventions on their variables, often better than classical approaches.
Our inference method is based on a new theoretical result that expresses a stationarity condition on the diffusion's generator in a reproducing kernel Hilbert space.
arXiv Detail & Related papers (2023-10-26T14:01:17Z) - Bayesian Renormalization [68.8204255655161]
We present a fully information theoretic approach to renormalization inspired by Bayesian statistical inference.
The main insight of Bayesian Renormalization is that the Fisher metric defines a correlation length that plays the role of an emergent RG scale.
We provide insight into how the Bayesian Renormalization scheme relates to existing methods for data compression and data generation.
arXiv Detail & Related papers (2023-05-17T18:00:28Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
We extend diffusion models to discrete variables by introducing a Markov jump process where the reverse process denoises via a continuous-time Markov chain.
We show that an unbiased estimator can be obtained via simple matching the conditional marginal distributions.
We demonstrate the effectiveness of the proposed method on a set of synthetic and real-world music and image benchmarks.
arXiv Detail & Related papers (2022-11-30T05:33:29Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Variational Inference as Iterative Projection in a Bayesian Hilbert
Space with Application to Robotic State Estimation [14.670851095242451]
Variational Bayesian inference is an important machine-learning tool that finds application from statistics to robotics.
We show that variational inference based on KL divergence can amount to iterative projection, in the Euclidean sense, of the Bayesian posterior onto a subspace corresponding to the selected approximation family.
arXiv Detail & Related papers (2020-05-14T21:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.