Understanding and Improving Transfer Learning of Deep Models via Neural Collapse
- URL: http://arxiv.org/abs/2212.12206v4
- Date: Thu, 18 Jul 2024 22:07:44 GMT
- Title: Understanding and Improving Transfer Learning of Deep Models via Neural Collapse
- Authors: Xiao Li, Sheng Liu, Jinxin Zhou, Xinyu Lu, Carlos Fernandez-Granda, Zhihui Zhu, Qing Qu,
- Abstract summary: This work investigates the relationship between neural collapse (NC) and transfer learning for classification problems.
We find strong correlation between feature collapse and downstream performance.
Our proposed fine-tuning methods deliver good performances while reducing fine-tuning parameters by at least 90%.
- Score: 37.483109067209504
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the ever-increasing complexity of large-scale pre-trained models coupled with a shortage of labeled data for downstream training, transfer learning has become the primary approach in many fields, including natural language processing, computer vision, and multi-modal learning. Despite recent progress, the fine-tuning process for large-scale pre-trained models in vision still mostly relies on trial and error. This work investigates the relationship between neural collapse (NC) and transfer learning for classification problems. NC is an intriguing while prevalent phenomenon that has been recently discovered in terms of the final-layer features and linear classifiers of trained neural networks. Specifically, during the terminal phase of training, NC implies that the variability of the features within each class diminishes to zero, while the means of features between classes are maximally and equally distanced. In this work, we examine the NC attributes of pre-trained models on both downstream and source data for transfer learning, and we find strong correlation between feature collapse and downstream performance. In particular, we discovered a systematic pattern that emerges when linear probing pre-trained models on downstream training data: the more feature collapse of pre-trained models on downstream training data, the higher the transfer accuracy. Additionally, we also studied the relationship between NC and transfer accuracy on the source data. Moreover, these findings allow us to develop a principled, parameter-efficient fine-tuning method that employs skip-connection to induce the last-layer feature collapse on downstream data. Our proposed fine-tuning methods deliver good performances while reducing fine-tuning parameters by at least 90% and mitigating overfitting in situations especially when the downstream data is scarce.
Related papers
- Neural Collapse Meets Differential Privacy: Curious Behaviors of NoisyGD with Near-perfect Representation Learning [36.954726737451224]
We consider the setting of a layer-peeled model in representation learning, which results in interesting phenomena related to learned features in deep learning and transfer learning.
We show that DP fine-tuning is less robust compared to fine-tuning without DP, particularly in the presence of perturbations.
arXiv Detail & Related papers (2024-05-14T19:18:19Z) - Convolutional Neural Networks for the classification of glitches in
gravitational-wave data streams [52.77024349608834]
We classify transient noise signals (i.e.glitches) and gravitational waves in data from the Advanced LIGO detectors.
We use models with a supervised learning approach, both trained from scratch using the Gravity Spy dataset.
We also explore a self-supervised approach, pre-training models with automatically generated pseudo-labels.
arXiv Detail & Related papers (2023-03-24T11:12:37Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural
Networks [12.525959293825318]
We introduce Learn, Unlearn, and Relearn (LURE) an online learning paradigm for deep neural networks (DNNs)
LURE interchanges between the unlearning phase, which selectively forgets the undesirable information in the model, and the relearning phase, which emphasizes learning on generalizable features.
We show that our training paradigm provides consistent performance gains across datasets in both classification and few-shot settings.
arXiv Detail & Related papers (2023-03-18T16:45:54Z) - DCLP: Neural Architecture Predictor with Curriculum Contrastive Learning [5.2319020651074215]
We propose a Curricumum-guided Contrastive Learning framework for neural Predictor (DCLP)
Our method simplifies the contrastive task by designing a novel curriculum to enhance the stability of unlabeled training data distribution.
We experimentally demonstrate that DCLP has high accuracy and efficiency compared with existing predictors.
arXiv Detail & Related papers (2023-02-25T08:16:21Z) - Slimmable Networks for Contrastive Self-supervised Learning [69.9454691873866]
Self-supervised learning makes significant progress in pre-training large models, but struggles with small models.
We introduce another one-stage solution to obtain pre-trained small models without the need for extra teachers.
A slimmable network consists of a full network and several weight-sharing sub-networks, which can be pre-trained once to obtain various networks.
arXiv Detail & Related papers (2022-09-30T15:15:05Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
We consider the generalization error of two-layer neural networks trained to generalize by gradient descent.
We show that neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test error.
In contrast to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds in a setting where both the model and learning dynamics are fundamentally nonlinear.
arXiv Detail & Related papers (2022-02-11T23:04:00Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" datasets.
In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset.
We show that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities.
arXiv Detail & Related papers (2021-11-26T11:58:51Z) - MUSCLE: Strengthening Semi-Supervised Learning Via Concurrent
Unsupervised Learning Using Mutual Information Maximization [29.368950377171995]
We introduce Mutual-information-based Unsupervised & Semi-supervised Concurrent LEarning (MUSCLE) to combine both unsupervised and semi-supervised learning.
MUSCLE can be used as a stand-alone training scheme for neural networks, and can also be incorporated into other learning approaches.
We show that the proposed hybrid model outperforms state of the art on several standard benchmarks, including CIFAR-10, CIFAR-100, and Mini-Imagenet.
arXiv Detail & Related papers (2020-11-30T23:01:04Z) - Adversarially-Trained Deep Nets Transfer Better: Illustration on Image
Classification [53.735029033681435]
Transfer learning is a powerful methodology for adapting pre-trained deep neural networks on image recognition tasks to new domains.
In this work, we demonstrate that adversarially-trained models transfer better than non-adversarially-trained models.
arXiv Detail & Related papers (2020-07-11T22:48:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.