Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation
- URL: http://arxiv.org/abs/2212.12733v1
- Date: Sat, 24 Dec 2022 13:31:56 GMT
- Title: Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation
- Authors: Daniel P. Benalcazar, David A. Benalcazar, Andres Valenzuela
- Abstract summary: Modern approaches to iris recognition utilize deep learning to segment the valid portion of the iris from the rest of the eye.
This paper aims to improve the accuracy of iris semantic segmentation systems by introducing a novel data augmentation technique.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biometrics is the science of identifying an individual based on their
intrinsic anatomical or behavioural characteristics, such as fingerprints,
face, iris, gait, and voice. Iris recognition is one of the most successful
methods because it exploits the rich texture of the human iris, which is unique
even for twins and does not degrade with age. Modern approaches to iris
recognition utilize deep learning to segment the valid portion of the iris from
the rest of the eye, so it can then be encoded, stored and compared. This paper
aims to improve the accuracy of iris semantic segmentation systems by
introducing a novel data augmentation technique. Our method can transform an
iris image with a certain dilation level into any desired dilation level, thus
augmenting the variability and number of training examples from a small
dataset. The proposed method is fast and does not require training. The results
indicate that our data augmentation method can improve segmentation accuracy up
to 15% for images with high pupil dilation, which creates a more reliable iris
recognition pipeline, even under extreme dilation.
Related papers
- On the Feasibility of Creating Iris Periocular Morphed Images [9.021226651004055]
This work proposes an end-to-end framework to produce iris morphs at the image level.
It considers different stages such as pair subject selection, segmentation, morph creation, and a new iris recognition system.
The results show that this approach obtained very realistic images that can confuse conventional iris recognition systems.
arXiv Detail & Related papers (2024-08-24T06:48:46Z) - EyePreserve: Identity-Preserving Iris Synthesis [8.973296574093506]
This paper presents the first method of fully data-driven, identity-preserving, pupil size-varying synthesis of iris images.
Two immediate applications of the proposed approach are: (a) synthesis of, or enhancement of the existing biometric datasets for iris recognition, and (b) helping forensic human experts in examining iris image pairs with significant differences in pupil dilation.
arXiv Detail & Related papers (2023-12-19T10:29:29Z) - Deep Learning for Iris Recognition: A Review [7.884782855865438]
Iris recognition is considered more reliable and less susceptible to external factors than other biometric recognition methods.
Unlike traditional machine learning-based iris recognition methods, deep learning technology does not rely on feature engineering and boasts excellent performance.
This paper collects 120 relevant papers to summarize the development of iris recognition based on deep learning.
arXiv Detail & Related papers (2023-03-15T10:45:21Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
Single image super-resolution techniques are emerging, especially with the use of convolutional neural networks (CNNs)
In this work, the authors explore single image super-resolution using CNNs for iris recognition.
They validate their approach on a database of 1.872 near infrared iris images and on a mobile phone image database.
arXiv Detail & Related papers (2022-10-24T11:19:18Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
Convolutional Neural Networks (CNNs) using different deep learning approaches attempt to recover realistic texture and fine grained details from low resolution images.
In this work we explore the viability of these approaches for iris Super-Resolution (SR) in an iris recognition environment.
Results show that CNNs and image re-projection can improve the results specially for the accuracy of recognition systems.
arXiv Detail & Related papers (2022-10-20T09:46:23Z) - Pseudo-label Guided Cross-video Pixel Contrast for Robotic Surgical
Scene Segmentation with Limited Annotations [72.15956198507281]
We propose PGV-CL, a novel pseudo-label guided cross-video contrast learning method to boost scene segmentation.
We extensively evaluate our method on a public robotic surgery dataset EndoVis18 and a public cataract dataset CaDIS.
arXiv Detail & Related papers (2022-07-20T05:42:19Z) - Super-Resolution for Selfie Biometrics: Introduction and Application to
Face and Iris [67.74999528342273]
Lack of resolution has a negative impact on the performance of image-based biometrics.
Super-resolution techniques have to be adapted for the particularities of images from a specific biometric modality.
This chapter presents an overview of recent advances in super-resolution reconstruction of face and iris images.
arXiv Detail & Related papers (2022-04-12T10:28:31Z) - Toward Accurate and Reliable Iris Segmentation Using Uncertainty
Learning [96.72850130126294]
We propose an Iris U-transformer (IrisUsformer) for accurate and reliable iris segmentation.
For better accuracy, we elaborately design IrisUsformer by adopting position-sensitive operation and re-packaging transformer block.
We show that IrisUsformer achieves better segmentation accuracy using 35% MACs of the SOTA IrisParseNet.
arXiv Detail & Related papers (2021-10-20T01:37:19Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z) - Segmentation-Aware and Adaptive Iris Recognition [24.125681602124477]
The quality of iris images acquired at-a-distance or under less constrained imaging environments is known to degrade the iris matching accuracy.
The periocular information is inherently embedded in such iris images and can be exploited to assist in the iris recognition under such non-ideal scenarios.
This paper presents such a segmentation-assisted adaptive framework for more accurate less-constrained iris recognition.
arXiv Detail & Related papers (2019-12-31T04:31:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.