Extending the coherence time of spin defects in hBN enables advanced
qubit control and quantum sensing
- URL: http://arxiv.org/abs/2212.12826v1
- Date: Sat, 24 Dec 2022 23:00:12 GMT
- Title: Extending the coherence time of spin defects in hBN enables advanced
qubit control and quantum sensing
- Authors: Roberto Rizzato, Martin Schalk, Stephan Mohr, Joachim P. Leibold, Jens
C. Hermann, Fleming Bruckmaier, Peirui Ji, Georgy V. Astakhov, Ulrich
Kentsch, Manfred Helm, Andreas V. Stier, Jonathan J. Finley and Dominik B.
Bucher
- Abstract summary: This work lays the foundation for nanoscale sensing using spin defects in an exfoliable material.
It opens a promising path to quantum sensors and quantum networks integrated into ultra-thin structures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Spin defects in hexagonal Boron Nitride (hBN) attract increasing interest for
quantum technology since they represent optically-addressable qubits in a van
der Waals material. In particular, negatively-charged boron vacancy centers
(${V_B}^-$) in hBN have shown promise as sensors of temperature, pressure, and
static magnetic fields. However, the short spin coherence time of this defect
currently limits its scope for quantum technology. Here, we apply dynamical
decoupling techniques to suppress magnetic noise and extend the spin coherence
time by nearly two orders of magnitude, approaching the fundamental $T_1$
relaxation limit. Based on this improvement, we demonstrate advanced spin
control and a set of quantum sensing protocols to detect electromagnetic
signals in the MHz range with sub-Hz resolution. This work lays the foundation
for nanoscale sensing using spin defects in an exfoliable material and opens a
promising path to quantum sensors and quantum networks integrated into
ultra-thin structures.
Related papers
- Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - Quantum sensing and imaging with spin defects in hexagonal boron nitride [2.8409310270487538]
Color centers in hexagonal boron nitride (hBN) have emerged as promising candidates for a new wave of quantum applications.
The recently discovered optically addressable spin defects in hBN provide a quantum interface between photons and electron spins for quantum sensing applications.
This review summarizes the rapidly evolving field of nanoscale and microscale quantum sensing with spin defects in hBN.
arXiv Detail & Related papers (2023-02-22T06:21:28Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Limits to Quantum Gate Fidelity from Near-Field Thermal and Vacuum
Fluctuations [11.344927971260676]
evanescent wave Johnson noise (EWJN) caused by thermal and vacuum fluctuations is an important unmitigated noise.
EWJN induces the decay of spin qubits and limits the quantum gate operation fidelity.
We study the limits to two spin-qubit gate fidelity from EWJN-induced relaxation processes in two experimentally relevant quantum computing platforms.
arXiv Detail & Related papers (2022-07-19T17:55:40Z) - Hole spin qubits in thin curved quantum wells [0.0]
Hole spin qubits are frontrunner platforms for scalable quantum computers.
Fastest spin qubits to date are defined in long quantum dots with confinement directions.
In these systems the lifetime of the qubit is strongly limited by charge noise.
We propose a different, scalable qubit design, compatible with planar CMOS technology.
arXiv Detail & Related papers (2022-04-18T08:34:38Z) - Electrical Control of Quantum Emitters in a Van der Waals
Heterostructure [2.239998253134085]
We show an approach to electrically modulate quantum emitters in n hBN graphene van der Waals heterostructure.
Notably, a significant number of quantum emitters are intrinsically dark, and become optically active at non-zero voltages.
Our results enhance the potential of hBN for tuneable solid state quantum emitters for the growing field of quantum information science.
arXiv Detail & Related papers (2021-11-04T11:03:53Z) - Quantum control of nuclear spin qubits in a rapidly rotating diamond [62.997667081978825]
Nuclear spins in certain solids couple weakly to their environment, making them attractive candidates for quantum information processing and inertial sensing.
We demonstrate optical nuclear spin polarization and rapid quantum control of nuclear spins in a diamond physically rotating at $1,$kHz, faster than the nuclear spin coherence time.
Our work liberates a previously inaccessible degree of freedom of the NV nuclear spin, unlocking new approaches to quantum control and rotation sensing.
arXiv Detail & Related papers (2021-07-27T03:39:36Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Room Temperature Coherent Control of Spin Defects in hexagonal Boron
Nitride [0.0]
Optically active defects in solids with accessible spin states are promising candidates for solid state quantum information and sensing applications.
We realize coherent control of ensembles of boron vacancy centers in hexagonal boron nitride (hBN)
Our results are important for employment of van der Waals materials for quantum technologies.
arXiv Detail & Related papers (2020-10-23T16:31:37Z) - Probing the coherence of solid-state qubits at avoided crossings [51.805457601192614]
We study the quantum dynamics of paramagnetic defects interacting with a nuclear spin bath at avoided crossings.
The proposed theoretical approach paves the way to designing the coherence properties of spin qubits from first principles.
arXiv Detail & Related papers (2020-10-21T15:37:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.