Fractional integrodifferential equations and (anti-)hermiticity of time
in a spacetime-symmetric extension of nonrelativistic Quantum Mechanics
- URL: http://arxiv.org/abs/2212.13217v2
- Date: Tue, 27 Dec 2022 13:13:18 GMT
- Title: Fractional integrodifferential equations and (anti-)hermiticity of time
in a spacetime-symmetric extension of nonrelativistic Quantum Mechanics
- Authors: Arlans JS de Lara and Marcus W Beims
- Abstract summary: In Quantum Mechanics, time appears as a classical parameter, meaning that it does not have an uncertainty relation with its canonical conjugate.
We first solve the novel $1/2$-fractional integrodifferential equation for a particle subjected to strong and weak potential limits and obtain an analytical expression for the tunnelling time through a rectangular barrier.
We also show that the expected time of arrival in the tunnelling problem has a form of an energy average of the classical times of arrival plus a quantum contribution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time continues to be an intriguing physical property in the modern era. On
the one hand, we have the Classical and Relativistic notion of time, where
space and time have the same hierarchy, which is essential in describing events
in spacetime. On the other hand, in Quantum Mechanics, time appears as a
classical parameter, meaning that it does not have an uncertainty relation with
its canonical conjugate. In this work, we use a recent proposed
spacetime-symmetric
formalism~\href{https://doi.org/10.1103/PhysRevA.95.032133}{[Phys.~Rev.~A {\bf
95}, 032133 (2017)]} that tries to solve the unbalance in nonrelativistic
Quantum Mechanics by extending the usual Hilbert space. The time parameter $t$
and the position operator $\hat{X}$ in one subspace, and the position parameter
$x$ and time operator $\mathbb{T}$ in the other subspace. Time as an operator
is better suitable for describing tunnelling processes. We then solve the novel
$1/2$-fractional integrodifferential equation for a particle subjected to
strong and weak potential limits and obtain an analytical expression for the
tunnelling time through a rectangular barrier. We compare to previous works,
obtaining pure imaginary times for energies below the barrier and a
fast-decaying imaginary part for energies above the barrier, indicating the
anti-hermiticity of the time operator for tunnelling times. We also show that
the expected time of arrival in the tunnelling problem has the form of an
energy average of the classical times of arrival plus a quantum contribution.
Related papers
- Looking for Carroll particles in two time spacetime [55.2480439325792]
Carroll particles with a non-vanishing value of energy are described in the framework of two time physics.
We construct the quantum theory of such a particle using an unexpected correspondence between our parametrization and that obtained by Bars for the hydrogen atom in 1999.
arXiv Detail & Related papers (2023-10-29T15:51:41Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Moyal deformation of the classical arrival time [0.0]
We find an appropriate quantum image of the classical arrival time $mathcalT_C(q,p)$, usually in operator form $hatmathrmT$.
The resulting quantum image is a real-valued and time-reversal symmetric function $mathcalT_M(q,p)$ in formal series of $hbar2$ with the classical arrival time as the leading term.
arXiv Detail & Related papers (2023-09-01T02:50:52Z) - Emergent geometric phase in time-dependent noncommutative quantum system [0.0]
We have given a systematic way to formulate non-relativistic quantum mechanics on 1+1 dimensional NC space-time.
Although the effect of noncommutativity of space-time should presumably become significant at a very high energy scale, it is intriguing to speculate that there should be some relics of the effects of quantum space-time even in a low-energy regime.
arXiv Detail & Related papers (2023-06-14T12:29:08Z) - Instantaneous tunneling of relativistic massive spin-0 particles [0.0]
A non-relativistic time-of-arrival operator predicted that tunneling time is instantaneous.
This raises the question on whether instantaneous tunneling time is a consequence of using a non-relativistic theory.
arXiv Detail & Related papers (2022-07-19T03:17:45Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - A shortcut to adiabaticity in a cavity with a moving mirror [58.720142291102135]
We describe for the first time how to implement shortcuts to adiabaticity in quantum field theory.
The shortcuts take place whenever there is no dynamical Casimir effect.
We obtain a fundamental limit for the efficiency of an Otto cycle with the quantum field as a working system.
arXiv Detail & Related papers (2022-02-01T20:40:57Z) - On the Problem of Time(s) in Quantum Mechanics and Quantum Gravity:
recent integrating developments and outlook [0.0]
How to restore time is the Problem of Time(s)
It introduces an intrinsic time property tau associated with the mass of the system.
It invalidates Pauli's objection to the existence of a time operator.
arXiv Detail & Related papers (2021-04-20T17:51:05Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Time-Dependent Pseudo-Hermitian Hamiltonians and a Hidden Geometric
Aspect of Quantum Mechanics [0.0]
A non-Hermitian operator $H$ defined in a Hilbert space with inner product $langlecdot|cdotrangle$ may serve as the Hamiltonian for a unitary quantum system.
Such quantum systems, which are also encountered in the study of quantum mechanics in cosmological backgrounds, suffer from a conflict between the unitarity of time evolution and the unobservability of the Hamiltonian.
arXiv Detail & Related papers (2020-04-10T23:00:43Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.