UAV Based 5G Network: A Practical Survey Study
- URL: http://arxiv.org/abs/2212.13329v1
- Date: Tue, 27 Dec 2022 00:34:59 GMT
- Title: UAV Based 5G Network: A Practical Survey Study
- Authors: Mohammed Abuzamak, Hisham Kholidy
- Abstract summary: Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute to the development of new wireless networks.
UAVs may transfer massive volumes of data in real-time by utilizing low latency and high-speed abilities of 5G networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unmanned aerial vehicles (UAVs) are anticipated to significantly contribute
to the development of new wireless networks that could handle high-speed
transmissions and enable wireless broadcasts. When compared to communications
that rely on permanent infrastructure, UAVs offer a number of advantages,
including flexible deployment, dependable line-of-sight (LoS) connection links,
and more design degrees of freedom because of controlled mobility. Unmanned
aerial vehicles (UAVs) combined with 5G networks and Internet of Things (IoT)
components have the potential to completely transform a variety of industries.
UAVs may transfer massive volumes of data in real-time by utilizing the low
latency and high-speed abilities of 5G networks, opening up a variety of
applications like remote sensing, precision farming, and disaster response.
This study of UAV communication with regard to 5G/B5G WLANs is presented in
this research. The three UAV-assisted MEC network scenarios also include the
specifics for the allocation of resources and optimization. We also concentrate
on the case where a UAV does task computation in addition to serving as a MEC
server to examine wind farm turbines. This paper covers the key implementation
difficulties of UAV-assisted MEC, such as optimum UAV deployment, wind models,
and coupled trajectory-computation performance optimization, in order to
promote widespread implementations of UAV-assisted MEC in practice. The primary
problem for 5G and beyond 5G (B5G) is delivering broadband access to various
device kinds. Prior to discussing associated research issues faced by the
developing integrated network design, we first provide a brief overview of the
background information as well as the networks that integrate space, aviation,
and land.
Related papers
- Deep Reinforcement Learning Based Placement for Integrated Access
Backhauling in UAV-Assisted Wireless Networks [6.895620511689995]
This paper introduces a novel approach leveraging deep reinforcement learning (DRL) to optimize UAV placement in real-time.
The unique contribution of this work lies in its ability to autonomously position UAVs in a way that not only ensures robust connectivity to ground users but also maintains seamless integration with central network infrastructure.
arXiv Detail & Related papers (2023-12-21T19:02:27Z) - Deep Reinforcement Learning for Combined Coverage and Resource
Allocation in UAV-aided RAN-slicing [1.7214664783818676]
This work presents a UAV-assisted 5G network, where the aerial base stations (UAV-BS) are empowered with network slicing capabilities.
A first application of multi-agent and multi-decision deep reinforcement learning for UAV-BS in a network slicing context is introduced.
The performance of the presented strategy have been tested and compared to benchmarks, highlighting a higher percentage of satisfied users (at least 27% more) in a variety of scenarios.
arXiv Detail & Related papers (2022-11-15T06:50:00Z) - 5G Network on Wings: A Deep Reinforcement Learning Approach to the
UAV-based Integrated Access and Backhaul [11.197456628712846]
Unmanned aerial vehicle (UAV) based aerial networks offer a promising alternative for fast, flexible, and reliable wireless communications.
In this paper, we study how to control multiple UAV-BSs in both static and dynamic environments.
Deep reinforcement learning algorithm is developed to jointly optimize the three-dimensional placement of these multiple UAV-BSs.
arXiv Detail & Related papers (2022-02-04T07:45:06Z) - Multi-Agent Deep Reinforcement Learning For Optimising Energy Efficiency
of Fixed-Wing UAV Cellular Access Points [3.502112118170715]
We propose a multi-agent deep reinforcement learning approach to optimise the energy efficiency of fixed-wing UAV cellular access points.
In our approach, each UAV is equipped with a Dueling Deep Q-Network (DDQN) agent which can adjust the 3D trajectory of the UAV over a series of timesteps.
arXiv Detail & Related papers (2021-11-03T14:49:17Z) - RIS-assisted UAV Communications for IoT with Wireless Power Transfer
Using Deep Reinforcement Learning [75.677197535939]
We propose a simultaneous wireless power transfer and information transmission scheme for IoT devices with support from unmanned aerial vehicle (UAV) communications.
In a first phase, IoT devices harvest energy from the UAV through wireless power transfer; and then in a second phase, the UAV collects data from the IoT devices through information transmission.
We formulate a Markov decision process and propose two deep reinforcement learning algorithms to solve the optimization problem of maximizing the total network sum-rate.
arXiv Detail & Related papers (2021-08-05T23:55:44Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC) and massive machine-type communications (mMTC)
On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in 3D space.
On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference.
arXiv Detail & Related papers (2020-10-19T08:56:04Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - Integrating LEO Satellite and UAV Relaying via Reinforcement Learning
for Non-Terrestrial Networks [51.05735925326235]
A mega-constellation of low-earth orbit (LEO) satellites has the potential to enable long-range communication with low latency.
We study the problem of forwarding packets between two faraway ground terminals, through an LEO satellite selected from an orbiting constellation.
To maximize the end-to-end data rate, the satellite association and HAP location should be optimized.
We tackle this problem using deep reinforcement learning (DRL) with a novel action dimension reduction technique.
arXiv Detail & Related papers (2020-05-26T05:39:27Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
Artificial intelligence (AI) assisted unmanned aerial vehicle (UAV) aided next-generation networking is proposed for dynamic environments.
In the AI-enabled UAV-aided wireless networks (UAWN), multiple UAVs are employed as aerial base stations, which are capable of rapidly adapting to the dynamic environment.
As a benefit of the AI framework, several challenges of conventional UAWN may be circumvented, leading to enhanced network performance, improved reliability and agile adaptivity.
arXiv Detail & Related papers (2020-01-28T15:10:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.