On Transforming Reinforcement Learning by Transformer: The Development
Trajectory
- URL: http://arxiv.org/abs/2212.14164v1
- Date: Thu, 29 Dec 2022 03:15:59 GMT
- Title: On Transforming Reinforcement Learning by Transformer: The Development
Trajectory
- Authors: Shengchao Hu, Li Shen, Ya Zhang, Yixin Chen, Dacheng Tao
- Abstract summary: Transformer, originally devised for natural language processing, has also attested significant success in computer vision.
We group existing developments in two categories: architecture enhancement and trajectory optimization.
We examine the main applications of TRL in robotic manipulation, text-based games, navigation and autonomous driving.
- Score: 97.79247023389445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transformer, originally devised for natural language processing, has also
attested significant success in computer vision. Thanks to its super expressive
power, researchers are investigating ways to deploy transformers to
reinforcement learning (RL) and the transformer-based models have manifested
their potential in representative RL benchmarks. In this paper, we collect and
dissect recent advances on transforming RL by transformer (transformer-based RL
or TRL), in order to explore its development trajectory and future trend. We
group existing developments in two categories: architecture enhancement and
trajectory optimization, and examine the main applications of TRL in robotic
manipulation, text-based games, navigation and autonomous driving. For
architecture enhancement, these methods consider how to apply the powerful
transformer structure to RL problems under the traditional RL framework, which
model agents and environments much more precisely than deep RL methods, but
they are still limited by the inherent defects of traditional RL algorithms,
such as bootstrapping and "deadly triad". For trajectory optimization, these
methods treat RL problems as sequence modeling and train a joint state-action
model over entire trajectories under the behavior cloning framework, which are
able to extract policies from static datasets and fully use the long-sequence
modeling capability of the transformer. Given these advancements, extensions
and challenges in TRL are reviewed and proposals about future direction are
discussed. We hope that this survey can provide a detailed introduction to TRL
and motivate future research in this rapidly developing field.
Related papers
- Rethinking Decision Transformer via Hierarchical Reinforcement Learning [54.3596066989024]
Decision Transformer (DT) is an innovative algorithm leveraging recent advances of the transformer architecture in reinforcement learning (RL)
We introduce a general sequence modeling framework for studying sequential decision making through the lens of Hierarchical RL.
We show DT emerges as a special case of this framework with certain choices of high-level and low-level policies, and discuss the potential failure of these choices.
arXiv Detail & Related papers (2023-11-01T03:32:13Z) - Transformers in Reinforcement Learning: A Survey [7.622978576824539]
Transformers have impacted domains like natural language processing, computer vision, and robotics, where they improve performance compared to other neural networks.
This survey explores how transformers are used in reinforcement learning (RL), where they are seen as a promising solution for addressing challenges such as unstable training, credit assignment, lack of interpretability, and partial observability.
arXiv Detail & Related papers (2023-07-12T07:51:12Z) - Emergent Agentic Transformer from Chain of Hindsight Experience [96.56164427726203]
We show that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
This is the first time that a simple transformer-based model performs competitively with both temporal-difference and imitation-learning-based approaches.
arXiv Detail & Related papers (2023-05-26T00:43:02Z) - A Survey on Transformers in Reinforcement Learning [66.23773284875843]
Transformer has been considered the dominating neural architecture in NLP and CV, mostly under supervised settings.
Recently, a similar surge of using Transformers has appeared in the domain of reinforcement learning (RL), but it is faced with unique design choices and challenges brought by the nature of RL.
This paper systematically reviews motivations and progress on using Transformers in RL, provide a taxonomy on existing works, discuss each sub-field, and summarize future prospects.
arXiv Detail & Related papers (2023-01-08T14:04:26Z) - TransDreamer: Reinforcement Learning with Transformer World Models [33.34909288732319]
We propose a transformer-based Model-Based Reinforcement Learning agent, called TransDreamer.
We first introduce the Transformer State-Space Model, a world model that leverages a transformer for dynamics predictions. We then share this world model with a transformer-based policy network and obtain stability in training a transformer-based RL agent.
In experiments, we apply the proposed model to 2D visual RL and 3D first-person visual RL tasks both requiring long-range memory access for memory-based reasoning. We show that the proposed model outperforms Dreamer in these complex tasks.
arXiv Detail & Related papers (2022-02-19T00:30:52Z) - Reinforcement Learning as One Big Sequence Modeling Problem [84.84564880157149]
Reinforcement learning (RL) is typically concerned with estimating single-step policies or single-step models.
We view RL as a sequence modeling problem, with the goal being to predict a sequence of actions that leads to a sequence of high rewards.
arXiv Detail & Related papers (2021-06-03T17:58:51Z) - Decision Transformer: Reinforcement Learning via Sequence Modeling [102.86873656751489]
We present a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem.
We present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling.
Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.
arXiv Detail & Related papers (2021-06-02T17:53:39Z) - Stabilizing Transformer-Based Action Sequence Generation For Q-Learning [5.707122938235432]
The goal is a simple Transformer-based Deep Q-Learning method that is stable over several environments.
The proposed method can match the performance of classic Q-learning on control environments while showing potential on some selected Atari benchmarks.
arXiv Detail & Related papers (2020-10-23T22:55:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.