Gaussian Process Priors for Systems of Linear Partial Differential
Equations with Constant Coefficients
- URL: http://arxiv.org/abs/2212.14319v4
- Date: Thu, 2 Nov 2023 08:17:34 GMT
- Title: Gaussian Process Priors for Systems of Linear Partial Differential
Equations with Constant Coefficients
- Authors: Marc H\"ark\"onen, Markus Lange-Hegermann, Bogdan Rai\c{t}\u{a}
- Abstract summary: Partial differential equations (PDEs) are important tools to model physical systems.
We propose a family of Gaussian process (GP) priors, which we call EPGP, such that all realizations are exact solutions of this system.
We demonstrate our approach on three families of systems of PDEs, the heat equation, wave equation, and Maxwell's equations.
- Score: 4.327763441385371
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Partial differential equations (PDEs) are important tools to model physical
systems and including them into machine learning models is an important way of
incorporating physical knowledge. Given any system of linear PDEs with constant
coefficients, we propose a family of Gaussian process (GP) priors, which we
call EPGP, such that all realizations are exact solutions of this system. We
apply the Ehrenpreis-Palamodov fundamental principle, which works as a
non-linear Fourier transform, to construct GP kernels mirroring standard
spectral methods for GPs. Our approach can infer probable solutions of linear
PDE systems from any data such as noisy measurements, or pointwise defined
initial and boundary conditions. Constructing EPGP-priors is algorithmic,
generally applicable, and comes with a sparse version (S-EPGP) that learns the
relevant spectral frequencies and works better for big data sets. We
demonstrate our approach on three families of systems of PDEs, the heat
equation, wave equation, and Maxwell's equations, where we improve upon the
state of the art in computation time and precision, in some experiments by
several orders of magnitude.
Related papers
- Gaussian Process Priors for Boundary Value Problems of Linear Partial Differential Equations [3.524869467682149]
Solving systems of partial differential equations (PDEs) is a fundamental task in computational science.
Recent advancements have introduced neural operators and physics-informed neural networks (PINNs) to tackle PDEs.
We propose a novel framework for constructing GP priors that satisfy both general systems of linear PDEs with constant coefficients and linear boundary conditions.
arXiv Detail & Related papers (2024-11-25T18:48:15Z) - Spectral operator learning for parametric PDEs without data reliance [6.7083321695379885]
We introduce a novel operator learning-based approach for solving parametric partial differential equations (PDEs) without the need for data harnessing.
The proposed framework demonstrates superior performance compared to existing scientific machine learning techniques.
arXiv Detail & Related papers (2023-10-03T12:37:15Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Fourier Neural Operator with Learned Deformations for PDEs on General Geometries [75.91055304134258]
We propose a new framework, viz., geo-FNO, to solve PDEs on arbitrary geometries.
Geo-FNO learns to deform the input (physical) domain, which may be irregular, into a latent space with a uniform grid.
We consider a variety of PDEs such as the Elasticity, Plasticity, Euler's, and Navier-Stokes equations, and both forward modeling and inverse design problems.
arXiv Detail & Related papers (2022-07-11T21:55:47Z) - Learning to correct spectral methods for simulating turbulent flows [6.110864131646294]
We show that a hybrid of classical numerical techniques and machine learning can offer significant improvements over either approach alone.
Specifically, we develop ML-augmented spectral solvers for three common partial differential equations of fluid dynamics.
arXiv Detail & Related papers (2022-07-01T17:13:28Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
In many application domains across science and engineering, we are interested in solving inverse problems with constraints defined by a partial differential equation (PDE)
Here we explore GNNs to solve such PDE-constrained inverse problems.
We demonstrate computational speedups of up to 90x using GNNs compared to principled solvers.
arXiv Detail & Related papers (2022-06-01T18:48:01Z) - AutoIP: A United Framework to Integrate Physics into Gaussian Processes [15.108333340471034]
We propose a framework that can integrate all kinds of differential equations into Gaussian processes.
Our method shows improvement upon vanilla GPs in both simulation and several real-world applications.
arXiv Detail & Related papers (2022-02-24T19:02:14Z) - Adjoint-aided inference of Gaussian process driven differential
equations [0.8257490175399691]
We show how the adjoint of a linear system can be used to efficiently infer forcing functions modelled as GPs.
We demonstrate the approach on systems of both ordinary and partial differential equations.
arXiv Detail & Related papers (2022-02-09T17:35:14Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINO is the first hybrid approach incorporating data and PDE constraints at different resolutions to learn the operator.
The resulting PINO model can accurately approximate the ground-truth solution operator for many popular PDE families.
arXiv Detail & Related papers (2021-11-06T03:41:34Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.