Comparison of Density-Matrix Corrections to Density Functional Theory
- URL: http://arxiv.org/abs/2212.14369v1
- Date: Thu, 29 Dec 2022 16:50:16 GMT
- Title: Comparison of Density-Matrix Corrections to Density Functional Theory
- Authors: Daniel Gibney, Jan-Niklas Boyn and David A. Mazziotti
- Abstract summary: Density functional theory (DFT) fails to describe systems with statically correlated electrons.
We transform DFT into a one-electron reduced density matrix theory (1-RDMFT)
We generalize the information density matrix functional theory (iDMFT)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Density functional theory (DFT), one of the most widely utilized methods
available to computational chemistry, fails to describe systems with statically
correlated electrons. To address this shortcoming, in previous work we
transformed DFT into a one-electron reduced density matrix theory (1-RDMFT) via
the inclusion of a quadratic one-electron reduced density matrix (1-RDM)
correction. Here, we combine our 1-RDMFT approach with different DFT
functionals as well as Hartree-Fock to elucidate the method's dependence on the
underlying functional selection. Furthermore, we generalize the information
density matrix functional theory (iDMFT), recently developed as a correction to
the Hartree-Fock method, by incorporating density functionals in place of the
Hartree-Fock functional. We relate iDMFT mathematically to our approach and
benchmark the two with a common set of functionals and systems.
Related papers
- Enhancing Density Functional Theory for Static Correlation in Large Molecules [0.0]
A critical challenge for density functional theory (DFT) in practice is its limited ability to treat static electron correlation.
Recently, we combined one- and two-electron reduced density matrix theories with DFT to obtain a universal $O(N3)$ generalization of DFT for static correlation.
We apply the resulting functional theory to linear hydrogen chains as well as the prediction of the singlet-triplet gap and equilibrium geometries of acenes.
arXiv Detail & Related papers (2024-11-04T16:43:32Z) - Orbital-Free Density Functional Theory with Continuous Normalizing Flows [54.710176363763296]
Orbital-free density functional theory (OF-DFT) provides an alternative approach for calculating the molecular electronic energy.
Our model successfully replicates the electronic density for a diverse range of chemical systems.
arXiv Detail & Related papers (2023-11-22T16:42:59Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Relativistic reduced density matrix functional theory [0.0]
We propose to consider reduced density matrix functional theory, where the key quantity is the first-order reduced density matrix (1-RDM)
Within the np approximation the theory becomes similar to the nonrelativistic case, with as unknown only the functional that describes the electron-electron interactions in terms of the 1-RDM.
This requires the construction of functional approximations, and we therefore also present the relativistic versions of some common RDMFT approximations.
arXiv Detail & Related papers (2022-02-01T10:52:41Z) - Density Functional Theory Transformed into a One-electron Reduced
Density Matrix Functional Theory for the Capture of Static Correlation [0.0]
Density functional theory (DFT) fails to describe accurately the electronic structure of strongly correlated systems.
We show that DFT can be transformed into a one-electron reduced-density-matrix (1-RDM) functional theory.
Our approach yields substantial improvements over traditional DFT in the description of static correlation in chemical structures and processes.
arXiv Detail & Related papers (2022-01-11T01:41:53Z) - eQE 2.0: Subsystem DFT Beyond GGA Functionals [58.720142291102135]
subsystem-DFT (sDFT) can dramatically reduce the computational cost of large-scale electronic structure calculations.
The key ingredients of sDFT are the nonadditive kinetic energy and exchange-correlation functionals which dominate it's accuracy.
eQE 2.0 delivers excellent interaction energies compared to conventional Kohn-Sham DFT and CCSD(T)
arXiv Detail & Related papers (2021-03-12T22:26:36Z) - Approximations based on density-matrix embedding theory for
density-functional theories [0.0]
We give a detailed review of the basics of density-matrix embedding theory (DMET) and show how it can be used to supplement other DFTs.
We highlight how the mappings of DFTs can be used to identify uniquely defined auxiliary systems and auxiliary projections.
arXiv Detail & Related papers (2021-03-02T21:10:51Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Combining density based dynamical correlation with a reduced density
matrix strong correlation description [0.0]
It is shown that a pair of 1DM functional methods reproduces a benchmark molecule by Lie and Clementi.
A new method is proposed to correct for double counting correlation functional density functional theory.
arXiv Detail & Related papers (2020-07-06T04:39:22Z) - Multi-Objective Matrix Normalization for Fine-grained Visual Recognition [153.49014114484424]
Bilinear pooling achieves great success in fine-grained visual recognition (FGVC)
Recent methods have shown that the matrix power normalization can stabilize the second-order information in bilinear features.
We propose an efficient Multi-Objective Matrix Normalization (MOMN) method that can simultaneously normalize a bilinear representation.
arXiv Detail & Related papers (2020-03-30T08:40:35Z) - DFTpy: An efficient and object-oriented platform for orbital-free DFT
simulations [55.41644538483948]
In this work, we present DFTpy, an open source software implementing OFDFT written entirely in Python 3.
We showcase the electronic structure of a million-atom system of aluminum metal which was computed on a single CPU.
DFTpy is released under the MIT license.
arXiv Detail & Related papers (2020-02-07T19:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.