Physics-informed Neural Networks approach to solve the Blasius function
- URL: http://arxiv.org/abs/2301.00106v1
- Date: Sat, 31 Dec 2022 03:14:42 GMT
- Title: Physics-informed Neural Networks approach to solve the Blasius function
- Authors: Greeshma Krishna, Malavika S Nair, Pramod P Nair, Anil Lal S
- Abstract summary: This paper presents a physics-informed neural network (PINN) approach to solve the Blasius function.
It is seen that this method produces results that are at par with the numerical and conventional methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning techniques with neural networks have been used effectively in
computational fluid dynamics (CFD) to obtain solutions to nonlinear
differential equations. This paper presents a physics-informed neural network
(PINN) approach to solve the Blasius function. This method eliminates the
process of changing the non-linear differential equation to an initial value
problem. Also, it tackles the convergence issue arising in the conventional
series solution. It is seen that this method produces results that are at par
with the numerical and conventional methods. The solution is extended to the
negative axis to show that PINNs capture the singularity of the function at
$\eta=-5.69$
Related papers
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
The study uses a feedforward neural network model and error backpropagation principles, utilizing automatic differentiation (AD) to compute the loss function.
The numerical efficiency and accuracy of the CSNN model are investigated through testing on elliptic partial differential equations, and it is compared with the well-known Physics-Informed Neural Network(PINN) method.
arXiv Detail & Related papers (2024-06-06T05:31:45Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - A deep branching solver for fully nonlinear partial differential
equations [0.1474723404975345]
We present a multidimensional deep learning implementation of a branching algorithm for the numerical solution of fully nonlinear PDEs.
This approach is designed to tackle functional nonlinearities involving gradient terms of any orders.
arXiv Detail & Related papers (2022-03-07T09:46:46Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
It is shown that one can obtain a relatively accurate estimate of the considered parameters using the proposed method.
It provides a natural framework in inverse problems of partial differential equations with deep learning.
arXiv Detail & Related papers (2021-07-19T02:54:37Z) - Conditional physics informed neural networks [85.48030573849712]
We introduce conditional PINNs (physics informed neural networks) for estimating the solution of classes of eigenvalue problems.
We show that a single deep neural network can learn the solution of partial differential equations for an entire class of problems.
arXiv Detail & Related papers (2021-04-06T18:29:14Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
We investigate how the variability in solvers' space can improve neural ODEs performance.
We show that the right choice of solver parameterization can significantly affect neural ODEs models in terms of robustness to adversarial attacks.
arXiv Detail & Related papers (2021-03-15T17:26:34Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
We explore the performance and accuracy of various neural architectures on both linear and nonlinear differential equations.
We implement a novel Legendre-Galerkin Deep Neural Network (LGNet) algorithm to predict solutions to differential equations.
arXiv Detail & Related papers (2020-10-24T20:25:09Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - A Derivative-Free Method for Solving Elliptic Partial Differential
Equations with Deep Neural Networks [2.578242050187029]
We introduce a deep neural network based method for solving a class of elliptic partial differential equations.
We approximate the solution of the PDE with a deep neural network which is trained under the guidance of a probabilistic representation of the PDE.
As Brownian walkers explore the domain, the deep neural network is iteratively trained using a form of reinforcement learning.
arXiv Detail & Related papers (2020-01-17T03:29:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.