Ponder: Point Cloud Pre-training via Neural Rendering
- URL: http://arxiv.org/abs/2301.00157v2
- Date: Thu, 26 Oct 2023 15:56:50 GMT
- Title: Ponder: Point Cloud Pre-training via Neural Rendering
- Authors: Di Huang, Sida Peng, Tong He, Honghui Yang, Xiaowei Zhou, Wanli Ouyang
- Abstract summary: We propose a novel approach to self-supervised learning of point cloud representations by differentiable neural encoders.
The learned point-cloud can be easily integrated into various downstream tasks, including not only high-level rendering tasks like 3D detection and segmentation, but low-level tasks like 3D reconstruction and image rendering.
- Score: 93.34522605321514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel approach to self-supervised learning of point cloud
representations by differentiable neural rendering. Motivated by the fact that
informative point cloud features should be able to encode rich geometry and
appearance cues and render realistic images, we train a point-cloud encoder
within a devised point-based neural renderer by comparing the rendered images
with real images on massive RGB-D data. The learned point-cloud encoder can be
easily integrated into various downstream tasks, including not only high-level
tasks like 3D detection and segmentation, but low-level tasks like 3D
reconstruction and image synthesis. Extensive experiments on various tasks
demonstrate the superiority of our approach compared to existing pre-training
methods.
Related papers
- PFGS: High Fidelity Point Cloud Rendering via Feature Splatting [5.866747029417274]
We propose a novel framework to render high-quality images from sparse points.
This method first attempts to bridge the 3D Gaussian Splatting and point cloud rendering.
Experiments on different benchmarks show the superiority of our method in terms of rendering qualities and the necessities of our main components.
arXiv Detail & Related papers (2024-07-04T11:42:54Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
We present a hybrid-view-based knowledge distillation framework, termed HVDistill, to guide the feature learning of a point cloud neural network.
Our method achieves consistent improvements over the baseline trained from scratch and significantly out- performs the existing schemes.
arXiv Detail & Related papers (2024-03-18T14:18:08Z) - PRED: Pre-training via Semantic Rendering on LiDAR Point Clouds [18.840000859663153]
We propose PRED, a novel image-assisted pre-training framework for outdoor point clouds.
The main ingredient of our framework is a Birds-Eye-View (BEV) feature map conditioned semantic rendering.
We further enhance our model's performance by incorporating point-wise masking with a high mask ratio.
arXiv Detail & Related papers (2023-11-08T07:26:09Z) - Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance
Fields [63.21420081888606]
Recent Radiance Fields and extensions are proposed to synthesize realistic images from 2D input.
We present Point2Pix as a novel point to link the 3D sparse point clouds with 2D dense image pixels.
arXiv Detail & Related papers (2023-03-29T06:26:55Z) - Self-Supervised Learning with Multi-View Rendering for 3D Point Cloud
Analysis [33.31864436614945]
We propose a novel pre-training method for 3D point cloud models.
Our pre-training is self-supervised by a local pixel/point level correspondence loss and a global image/point cloud level loss.
These improved models outperform existing state-of-the-art methods on various datasets and downstream tasks.
arXiv Detail & Related papers (2022-10-28T05:23:03Z) - Shrinking unit: a Graph Convolution-Based Unit for CNN-like 3D Point
Cloud Feature Extractors [0.0]
We argue that a lack of inspiration from the image domain might be the primary cause of such a gap.
We propose a graph convolution-based unit, dubbed Shrinking unit, that can be stacked vertically and horizontally for the design of CNN-like 3D point cloud feature extractors.
arXiv Detail & Related papers (2022-09-26T15:28:31Z) - SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for
Spatial-Aware Visual Representations [85.38562724999898]
We propose a 2D Image and 3D Point cloud Unsupervised pre-training strategy, called SimIPU.
Specifically, we develop a multi-modal contrastive learning framework that consists of an intra-modal spatial perception module and an inter-modal feature interaction module.
To the best of our knowledge, this is the first study to explore contrastive learning pre-training strategies for outdoor multi-modal datasets.
arXiv Detail & Related papers (2021-12-09T03:27:00Z) - Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding [80.04281842702294]
We introduce the concept of the multi-view point cloud (Voint cloud) representing each 3D point as a set of features extracted from several view-points.
This novel 3D Voint cloud representation combines the compactness of 3D point cloud representation with the natural view-awareness of multi-view representation.
We deploy a Voint neural network (VointNet) with a theoretically established functional form to learn representations in the Voint space.
arXiv Detail & Related papers (2021-11-30T13:08:19Z) - Graphite: GRAPH-Induced feaTure Extraction for Point Cloud Registration [80.69255347486693]
We introduce a GRAPH-Induced feaTure Extraction pipeline, a simple yet powerful feature and keypoint detector.
We construct a generic graph-based learning scheme to describe point cloud regions and extract salient points.
We Reformulate the 3D keypoint pipeline with graph neural networks which allow efficient processing of the point set.
arXiv Detail & Related papers (2020-10-18T19:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.