Deep Learning Technique for Human Parsing: A Survey and Outlook
- URL: http://arxiv.org/abs/2301.00394v2
- Date: Thu, 14 Mar 2024 02:00:19 GMT
- Title: Deep Learning Technique for Human Parsing: A Survey and Outlook
- Authors: Lu Yang, Wenhe Jia, Shan Li, Qing Song,
- Abstract summary: In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing.
We put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research.
We point out a set of under-investigated open issues in this field and suggest new directions for future study.
- Score: 5.236995853909988
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human parsing aims to partition humans in image or video into multiple pixel-level semantic parts. In the last decade, it has gained significantly increased interest in the computer vision community and has been utilized in a broad range of practical applications, from security monitoring, to social media, to visual special effects, just to name a few. Although deep learning-based human parsing solutions have made remarkable achievements, many important concepts, existing challenges, and potential research directions are still confusing. In this survey, we comprehensively review three core sub-tasks: single human parsing, multiple human parsing, and video human parsing, by introducing their respective task settings, background concepts, relevant problems and applications, representative literature, and datasets. We also present quantitative performance comparisons of the reviewed methods on benchmark datasets. Additionally, to promote sustainable development of the community, we put forward a transformer-based human parsing framework, providing a high-performance baseline for follow-up research through universal, concise, and extensible solutions. Finally, we point out a set of under-investigated open issues in this field and suggest new directions for future study. We also provide a regularly updated project page, to continuously track recent developments in this fast-advancing field: https://github.com/soeaver/awesome-human-parsing.
Related papers
- Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
We discuss the recent advances in deep learning-based object pose estimation.
Our survey also covers multiple input data modalities, degrees-of-freedom of output poses, object properties, and downstream tasks.
arXiv Detail & Related papers (2024-05-13T14:44:22Z) - A Unified Framework for Human-centric Point Cloud Video Understanding [23.91555808792291]
Human-centric Point Cloud Video Understanding (PVU) is an emerging field focused on extracting and interpreting human-related features from sequences of human point clouds.
We propose a unified framework to make full use of the prior knowledge and explore the inherent features in the data itself for generalized human-centric point cloud video understanding.
Our method achieves state-of-the-art performance on various human-related tasks, including action recognition and 3D pose estimation.
arXiv Detail & Related papers (2024-03-29T07:53:06Z) - A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented,
Temporal and Depth-aware design [77.34726150561087]
We conduct a survey on the most relevant and recent advances in Deep Semantic in the context of vision for autonomous vehicles.
Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective.
arXiv Detail & Related papers (2023-03-08T01:29:55Z) - Deep Learning for Human Parsing: A Survey [54.812353922568995]
We provide an analysis of state-of-the-art human parsing methods, covering a broad spectrum of pioneering works for semantic human parsing.
We introduce five insightful categories: (1) structure-driven architectures exploit the relationship of different human parts and the inherent hierarchical structure of a human body, (2) graph-based networks capture the global information to achieve an efficient and complete human body analysis, (3) context-aware networks explore useful contexts across all pixel to characterize a pixel of the corresponding class, and (4) LSTM-based methods can combine short-distance and long-distance spatial dependencies to better exploit abundant local and global contexts.
arXiv Detail & Related papers (2023-01-29T10:54:56Z) - Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep
Learning Perspective [69.44384540002358]
We provide a comprehensive and holistic 2D-to-3D perspective to tackle this problem.
We categorize the mainstream and milestone approaches since the year 2014 under unified frameworks.
We also summarize the pose representation styles, benchmarks, evaluation metrics, and the quantitative performance of popular approaches.
arXiv Detail & Related papers (2021-04-23T11:07:07Z) - Deep Learning-Based Human Pose Estimation: A Survey [66.01917727294163]
Human pose estimation has drawn increasing attention during the past decade.
It has been utilized in a wide range of applications including human-computer interaction, motion analysis, augmented reality, and virtual reality.
Recent deep learning-based solutions have achieved high performance in human pose estimation.
arXiv Detail & Related papers (2020-12-24T18:49:06Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.