Reference Twice: A Simple and Unified Baseline for Few-Shot Instance Segmentation
- URL: http://arxiv.org/abs/2301.01156v3
- Date: Thu, 8 Aug 2024 03:22:43 GMT
- Title: Reference Twice: A Simple and Unified Baseline for Few-Shot Instance Segmentation
- Authors: Yue Han, Jiangning Zhang, Yabiao Wang, Chengjie Wang, Yong Liu, Lu Qi, Xiangtai Li, Ming-Hsuan Yang,
- Abstract summary: Few-Shot Instance (FSIS) requires detecting and segmenting novel classes with limited support examples.
We introduce a unified framework, Reference Twice (RefT), to exploit the relationship between support and query features for FSIS.
- Score: 103.90033029330527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-Shot Instance Segmentation (FSIS) requires detecting and segmenting novel classes with limited support examples. Existing methods based on Region Proposal Networks (RPNs) face two issues: 1) Overfitting suppresses novel class objects; 2) Dual-branch models require complex spatial correlation strategies to prevent spatial information loss when generating class prototypes. We introduce a unified framework, Reference Twice (RefT), to exploit the relationship between support and query features for FSIS and related tasks. Our three main contributions are: 1) A novel transformer-based baseline that avoids overfitting, offering a new direction for FSIS; 2) Demonstrating that support object queries encode key factors after base training, allowing query features to be enhanced twice at both feature and query levels using simple cross-attention, thus avoiding complex spatial correlation interaction; 3) Introducing a class-enhanced base knowledge distillation loss to address the issue of DETR-like models struggling with incremental settings due to the input projection layer, enabling easy extension to incremental FSIS. Extensive experimental evaluations on the COCO dataset under three FSIS settings demonstrate that our method performs favorably against existing approaches across different shots, \eg, $+8.2/+9.4$ performance gain over state-of-the-art methods with 10/30-shots. Source code and models will be available at https://github.com/hanyue1648/RefT.
Related papers
- SMILe: Leveraging Submodular Mutual Information For Robust Few-Shot Object Detection [2.0755366440393743]
Confusion and forgetting of object classes have been challenges of prime interest in Few-Shot Object Detection (FSOD)
We introduce a novel Submodular Mutual Information Learning framework which adopts mutual information functions.
Our proposed approach generalizes to several existing approaches in FSOD, agnostic of the backbone architecture.
arXiv Detail & Related papers (2024-07-02T20:53:43Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.
We also develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
Our proposed ReSFU framework consistently achieves satisfactory performance on different segmentation applications.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - LaSagnA: Language-based Segmentation Assistant for Complex Queries [39.620806493454616]
Large Language Models for Vision (vLLMs) generate detailed perceptual outcomes, including bounding boxes and masks.
In this study, we acknowledge that the main cause of these problems is the insufficient complexity of training queries.
We present three novel strategies to effectively handle the challenges arising from the direct integration of the proposed format.
arXiv Detail & Related papers (2024-04-12T14:40:45Z) - Rethinking Few-shot 3D Point Cloud Semantic Segmentation [62.80639841429669]
This paper revisits few-shot 3D point cloud semantic segmentation (FS-PCS)
We focus on two significant issues in the state-of-the-art: foreground leakage and sparse point distribution.
To address these issues, we introduce a standardized FS-PCS setting, upon which a new benchmark is built.
arXiv Detail & Related papers (2024-03-01T15:14:47Z) - Fine-Grained Prototypes Distillation for Few-Shot Object Detection [8.795211323408513]
Few-shot object detection (FSOD) aims at extending a generic detector for novel object detection with only a few training examples.
In general, methods based on meta-learning employ an additional support branch to encode novel examples into class prototypes.
New methods are required to capture the distinctive local context for more robust novel object detection.
arXiv Detail & Related papers (2024-01-15T12:12:48Z) - Boosting Few-shot 3D Point Cloud Segmentation via Query-Guided
Enhancement [30.017448714419455]
This paper proposes a novel approach to improve point cloud few-shot segmentation (PC-FSS) models.
Unlike existing PC-FSS methods that directly utilize categorical information from support prototypes to recognize novel classes in query samples, our method identifies two critical aspects that substantially enhance model performance.
arXiv Detail & Related papers (2023-08-06T18:07:45Z) - Single-Stage Visual Relationship Learning using Conditional Queries [60.90880759475021]
TraCQ is a new formulation for scene graph generation that avoids the multi-task learning problem and the entity pair distribution.
We employ a DETR-based encoder-decoder conditional queries to significantly reduce the entity label space as well.
Experimental results show that TraCQ not only outperforms existing single-stage scene graph generation methods, it also beats many state-of-the-art two-stage methods on the Visual Genome dataset.
arXiv Detail & Related papers (2023-06-09T06:02:01Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
This work offers a novel unsupervised pre-training solution for low-data regimes.
Inspired by the recent success of the Prompting technique, we introduce a new pre-training method that boosts QEIS models.
Experimental results show that our method significantly boosts several QEIS models on three datasets.
arXiv Detail & Related papers (2023-02-02T15:49:03Z) - Prior Guided Feature Enrichment Network for Few-Shot Segmentation [64.91560451900125]
State-of-the-art semantic segmentation methods require sufficient labeled data to achieve good results.
Few-shot segmentation is proposed to tackle this problem by learning a model that quickly adapts to new classes with a few labeled support samples.
Theses frameworks still face the challenge of generalization ability reduction on unseen classes due to inappropriate use of high-level semantic information.
arXiv Detail & Related papers (2020-08-04T10:41:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.