Uncertainty in Real-Time Semantic Segmentation on Embedded Systems
- URL: http://arxiv.org/abs/2301.01201v4
- Date: Mon, 31 Jul 2023 08:03:57 GMT
- Title: Uncertainty in Real-Time Semantic Segmentation on Embedded Systems
- Authors: Ethan Goan, Clinton Fookes
- Abstract summary: Application for semantic segmentation models in areas such as autonomous vehicles and human computer interaction require real-time predictive capabilities.
The challenges of addressing real-time application is amplified by the need to operate on resource constrained hardware.
This paper addresses this by combining deep feature extraction from pre-trained models with Bayesian regression and moment propagation for uncertainty aware predictions.
- Score: 22.018605089162204
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Application for semantic segmentation models in areas such as autonomous
vehicles and human computer interaction require real-time predictive
capabilities. The challenges of addressing real-time application is amplified
by the need to operate on resource constrained hardware. Whilst development of
real-time methods for these platforms has increased, these models are unable to
sufficiently reason about uncertainty present when applied on embedded
real-time systems. This paper addresses this by combining deep feature
extraction from pre-trained models with Bayesian regression and moment
propagation for uncertainty aware predictions. We demonstrate how the proposed
method can yield meaningful epistemic uncertainty on embedded hardware in
real-time whilst maintaining predictive performance.
Related papers
- A probabilistic framework for learning non-intrusive corrections to long-time climate simulations from short-time training data [12.566163525039558]
We present a strategy for training neural network models to non-intrusively correct under-resolved long-time simulations of chaotic systems.
We demonstrate its ability to accurately predict the anisotropic statistics over time horizons more than 30 times longer than the data seen in training.
arXiv Detail & Related papers (2024-08-02T18:34:30Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
We introduce SMASH: a Score MAtching estimator for learning markedPs with uncertainty quantification.
Specifically, our framework adopts a normalization-free objective by estimating the pseudolikelihood of markedPs through score-matching.
The superior performance of our proposed framework is demonstrated through extensive experiments in both event prediction and uncertainty quantification.
arXiv Detail & Related papers (2023-10-25T02:37:51Z) - Timeseries-aware Uncertainty Wrappers for Uncertainty Quantification of
Information-Fusion-Enhanced AI Models based on Machine Learning [0.0]
We present a timeseries-aware uncertainty wrapper for dependable uncertainty estimates on timeseries data.
We show that it is possible to increase model accuracy through information fusion and additionally increase the quality of uncertainty estimates.
arXiv Detail & Related papers (2023-05-24T08:24:54Z) - Uncertainty Quantification for Local Model Explanations Without Model
Access [0.44241702149260353]
We present a model-agnostic algorithm for generating post-hoc explanations for a machine learning model.
Our algorithm uses a bootstrapping approach to quantify the uncertainty that inevitably arises when generating explanations from a finite sample of model queries.
arXiv Detail & Related papers (2023-01-13T21:18:00Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting [30.277213545837924]
Many classical statistical models often fall short in handling the complexity and high non-linearity present in time-series data.
In this work, we consider the time-series data as a random realization from a nonlinear state-space model.
We use particle flow as the tool for approximating the posterior distribution of the states, as it is shown to be highly effective in complex, high-dimensional settings.
arXiv Detail & Related papers (2021-06-10T21:49:23Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.