Dynamics of correlation spreading in low-dimensional transverse-field
Ising models
- URL: http://arxiv.org/abs/2301.01407v3
- Date: Thu, 3 Aug 2023 15:09:58 GMT
- Title: Dynamics of correlation spreading in low-dimensional transverse-field
Ising models
- Authors: Ryui Kaneko, Ippei Danshita
- Abstract summary: We investigate the dynamical spreading of correlations after a quantum quench starting from a magnetically disordered state in the transverse-field Ising model at one (1D) and two spatial dimensions (2D)
We analyze specifically the longitudinal and transverse spin-spin correlation functions at equal time with use of several methods.
Our findings provide useful benchmarks for quantum simulation experiments of correlation spreading and theoretical refinement of the Lieb-Robinson bound in the future.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the dynamical spreading of spatial correlations after a
quantum quench starting from a magnetically disordered state in the
transverse-field Ising model at one (1D) and two spatial dimensions (2D). We
analyze specifically the longitudinal and transverse spin-spin correlation
functions at equal time with use of several methods. From the comparison of the
results in 1D obtained by the linear spin-wave approximation (LSWA) and those
obtained by the rigorous analytical approach, we show that the LSWA can
asymptotically reproduce the exact group velocity in the limit of strong
transverse fields while it fails to capture the detailed time dependence of the
correlation functions. By applying the LSWA to the 2D case, in which the
rigorous analytical approach is unavailable, we estimate the propagation
velocity to be $Ja/(2\hbar)$ at the strong-field limit, where $J$ is the Ising
interaction and $a$ is the lattice spacing. We also utilize the tensor-network
method based on the projected-entangled pair states for 2D and quantitatively
compute the time evolution of the correlation functions for a relatively short
time. Our findings provide useful benchmarks for quantum simulation experiments
of correlation spreading and theoretical refinement of the Lieb-Robinson bound
in the future.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Spectroscopy and complex-time correlations using minimally entangled typical thermal states [39.58317527488534]
We introduce a practical approach to computing such correlators using minimally entangled typical thermal states.
We show that these numerical techniques capture the finite-temperature dynamics of the Shastry-Sutherland model.
arXiv Detail & Related papers (2024-05-28T18:00:06Z) - Path-dependent correlations in dynamically tuned Ising models and its
short-time behavior: application of Magnus expansion [22.883073860070954]
We study the buildup of antiferromagnetic (AF) correlation in the dynamically tuned Ising models.
We apply Magnus expansion (ME) to derive the high-order analytic expression of the connected correlation functions.
We find that the magnitude of AF correlation for the same Manhattan distance is proportional to the number of the shortest paths.
arXiv Detail & Related papers (2023-11-03T08:49:39Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Tensor-network study of correlation-spreading dynamics in the
two-dimensional Bose-Hubbard model [0.0]
We demonstrate that a tensor-network method running on classical computers is useful for this purpose.
We specifically analyze real-time dynamics of the two-dimensional Bose-Hubbard model after a sudden quench.
By estimating the phase and group velocities from the single-particle and density-density correlation functions, we predict how these velocities vary in the moderate interaction region.
arXiv Detail & Related papers (2021-08-25T05:37:16Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z) - Discrete truncated Wigner approach to dynamical phase transitions in
Ising models after a quantum quench [0.0]
We study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench.
We find identical exponents for $alpha lesssim 0.5$, suggesting that the dynamical transitions in this regime fall into the same universality class as the nonergodic mean-field limit.
arXiv Detail & Related papers (2020-04-21T08:20:15Z) - Correlation-induced steady states and limit cycles in driven dissipative
quantum systems [0.0]
We study a driven-dissipative model of spins one-half (qubits) on a lattice with nearest-neighbor interactions.
We characterize the spatial structure of the correlations in the steady state, as well as their temporal dynamics.
arXiv Detail & Related papers (2020-01-15T18:38:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.