COVID-Net USPro: An Open-Source Explainable Few-Shot Deep Prototypical
Network to Monitor and Detect COVID-19 Infection from Point-of-Care
Ultrasound Images
- URL: http://arxiv.org/abs/2301.01679v1
- Date: Wed, 4 Jan 2023 16:05:51 GMT
- Title: COVID-Net USPro: An Open-Source Explainable Few-Shot Deep Prototypical
Network to Monitor and Detect COVID-19 Infection from Point-of-Care
Ultrasound Images
- Authors: Jessy Song and Ashkan Ebadi and Adrian Florea and Pengcheng Xi and
St\'ephane Tremblay and Alexander Wong
- Abstract summary: COVID-Net USPro monitors and detects COVID-19 positive cases with high precision and recall from minimal ultrasound images.
The network achieves 99.65% overall accuracy, 99.7% recall and 99.67% precision for COVID-19 positive cases when trained with only 5 shots.
- Score: 66.63200823918429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the Coronavirus Disease 2019 (COVID-19) continues to impact many aspects
of life and the global healthcare systems, the adoption of rapid and effective
screening methods to prevent further spread of the virus and lessen the burden
on healthcare providers is a necessity. As a cheap and widely accessible
medical image modality, point-of-care ultrasound (POCUS) imaging allows
radiologists to identify symptoms and assess severity through visual inspection
of the chest ultrasound images. Combined with the recent advancements in
computer science, applications of deep learning techniques in medical image
analysis have shown promising results, demonstrating that artificial
intelligence-based solutions can accelerate the diagnosis of COVID-19 and lower
the burden on healthcare professionals. However, the lack of a huge amount of
well-annotated data poses a challenge in building effective deep neural
networks in the case of novel diseases and pandemics. Motivated by this, we
present COVID-Net USPro, an explainable few-shot deep prototypical network,
that monitors and detects COVID-19 positive cases with high precision and
recall from minimal ultrasound images. COVID-Net USPro achieves 99.65% overall
accuracy, 99.7% recall and 99.67% precision for COVID-19 positive cases when
trained with only 5 shots. The analytic pipeline and results were verified by
our contributing clinician with extensive experience in POCUS interpretation,
ensuring that the network makes decisions based on actual patterns.
Related papers
- COVID-Net UV: An End-to-End Spatio-Temporal Deep Neural Network
Architecture for Automated Diagnosis of COVID-19 Infection from Ultrasound
Videos [70.60433013657693]
COVID-Net comprises a convolutional neural network that extracts spatial features and a recurrent neural network that learns temporal dependence.
The network achieves an average accuracy of 94.44% with no false-negative cases for COVID-19 cases.
arXiv Detail & Related papers (2022-05-18T13:59:16Z) - COVID-Net US-X: Enhanced Deep Neural Network for Detection of COVID-19
Patient Cases from Convex Ultrasound Imaging Through Extended Linear-Convex
Ultrasound Augmentation Learning [75.74756992992147]
The global population continues to face significant negative impact by the on-going COVID-19 pandemic.
There has been an increasing usage of point-of-care ultrasound (POCUS) imaging as a low-cost effective imaging modality of choice.
A major challenge to building deep neural networks for COVID-19 screening using POCUS is the types of probes used.
arXiv Detail & Related papers (2022-04-29T02:13:39Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - An Approach Towards Physics Informed Lung Ultrasound Image Scoring
Neural Network for Diagnostic Assistance in COVID-19 [0.0]
A novel approach is presented to extract acoustic propagation-based features to highlight the region below pleura in lung ultrasound (LUS)
A neural network, referred to as LUSNet, is trained to classify the LUS images into five classes of varying severity of lung infection to track the progression of COVID-19.
A detailed analysis of the proposed approach on LUS images over the infection to full recovery period of ten confirmed COVID-19 subjects shows an average five-fold cross-validation accuracy, sensitivity, and specificity of 97%, 93%, and 98% respectively over 5000 frames of COVID-19 videos.
arXiv Detail & Related papers (2021-06-13T13:01:53Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-US is an open-access benchmark dataset of COVID-19 related ultrasound imaging data.
It consists of 93 lung ultrasound videos and 10,774 processed images of patients infected with SARS-CoV-2 pneumonia, non-SARS-CoV-2 pneumonia, as well as healthy control cases.
arXiv Detail & Related papers (2021-03-18T03:31:33Z) - An Attention Mechanism with Multiple Knowledge Sources for COVID-19
Detection from CT Images [1.6882040908691862]
We propose a novel strategy to improve the performance of several baselines by leveraging useful information sources relevant to doctors' judgments.
Infected regions and heat maps extracted from learned networks are integrated with the global image via an attention mechanism during the learning process.
This procedure not only makes our system more robust to noise but also guides the network focusing on local lesion areas.
arXiv Detail & Related papers (2020-09-23T09:05:24Z) - COVID_MTNet: COVID-19 Detection with Multi-Task Deep Learning Approaches [5.578413517654704]
We propose a fast and efficient way to identify COVID-19 patients with multi-task deep learning (DL) methods.
X-ray and CT scan images are considered to evaluate the proposed technique.
The detection model shows around 84.67% testing accuracy from X-ray images and 98.78% accuracy in CT-images.
arXiv Detail & Related papers (2020-04-07T23:19:59Z) - COVID-CAPS: A Capsule Network-based Framework for Identification of
COVID-19 cases from X-ray Images [34.93885932923011]
Coronavirus disease (COVID-19) has abruptly and undoubtedly changed the world as we know it at the end of the 2nd decade of the 21st century.
Early diagnosis of COVID-19 enables health care professionals and government authorities to break the chain of transition and flatten the epidemic curve.
There has been an urgent surge of interest to develop Deep Neural Network (DNN)-based diagnosis solutions, mainly based on Convolutional Neural Networks (CNNs)
The paper presents an alternative modeling framework based on Capsule Networks, referred to as the COVID-CAPS, being capable of handling small datasets.
arXiv Detail & Related papers (2020-04-06T14:20:47Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.