Tower of quantum scars in a partially many-body localized system
- URL: http://arxiv.org/abs/2301.01681v2
- Date: Tue, 23 May 2023 14:09:22 GMT
- Title: Tower of quantum scars in a partially many-body localized system
- Authors: Michael Iversen, Anne E. B. Nielsen
- Abstract summary: We show how one can find disordered Hamiltonians hosting a tower of scars by adapting a known method for finding parent Hamiltonians.
We demonstrate that localization stabilizes scar revivals of initial states with support both inside and outside the scar subspace.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Isolated quantum many-body systems are often well-described by the eigenstate
thermalization hypothesis. There are, however, mechanisms that cause different
behavior: many-body localization and quantum many-body scars. Here, we show how
one can find disordered Hamiltonians hosting a tower of scars by adapting a
known method for finding parent Hamiltonians. Using this method, we construct a
spin-1/2 model which is both partially localized and contains scars. We
demonstrate that the model is partially localized by studying numerically the
level spacing statistics and bipartite entanglement entropy. As disorder is
introduced, the adjacent gap ratio transitions from the Gaussian orthogonal
ensemble to the Poisson distribution and the entropy shifts from volume-law to
area-law scaling. We investigate the properties of scars in a partially
localized background and compare with a thermal background. At strong disorder,
states initialized inside or outside the scar subspace display different
dynamical behavior but have similar entanglement entropy and Schmidt gap. We
demonstrate that localization stabilizes scar revivals of initial states with
support both inside and outside the scar subspace. Finally, we show how strong
disorder introduces additional approximate towers of eigenstates.
Related papers
- Stability of quantum many-body scars on PXP model [49.1574468325115]
We numerically compute the fidelity and average correlations to monitor the state evolution and to identify revivals.
Results indicate that, on the one hand, the entanglement entropy of PXP scars exhibit great sensitivity.
Other scar signatures, such as the revivals of states having large overlap with scars, show remarkable robustness.
arXiv Detail & Related papers (2024-07-19T22:39:15Z) - Tower of two-dimensional scar states in a localized system [0.0]
We study a finite, two-dimensional, disordered model hosting a tower of scar states.
We find numerically that the spectra are nonthermal, and the scar states appear as exact eigenstates with high entropy.
We argue that, for the considered type of models, the localization is stronger than what would be naively expected.
arXiv Detail & Related papers (2023-08-23T20:11:21Z) - Quantum state complexity meets many-body scars [0.0]
Scar eigenstates in a many-body system refer to a small subset of non-thermal finite energy density eigenstates embedded into an otherwise thermal spectrum.
We probe these small sets of special eigenstates starting from particular initial states by computing the spread complexity associated to time evolution of the PXP hamiltonian.
arXiv Detail & Related papers (2023-05-16T18:10:46Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Exact many-body scars based on pairs or multimers in a chain of spinless
fermions [0.0]
We construct a 1D model Hamiltonian of spinless fermions for which the spinless analogue of $eta$-pairing states are quantum many-body scars.
These states are excited states and display subvolume entanglement entropy scaling.
arXiv Detail & Related papers (2022-07-15T15:26:23Z) - Quantum many-body scars in bipartite Rydberg arrays originate from
hidden projector embedding [0.0]
We study the ergodicity-breaking "quantum many-body scar" states that appear in the PXP model describing constrained Rabi oscillations.
For a wide class of bipartite lattices of Rydberg atoms, we reveal that the nearly energy-equidistant tower of these states arises from the Hamiltonian's close proximity to a generalized projector-embedding form.
arXiv Detail & Related papers (2022-03-01T18:06:53Z) - Quantum local random networks and the statistical robustness of quantum
scars [68.8204255655161]
We investigate the emergence of quantum scars in a general ensemble of random Hamiltonians.
We find a class of scars, that we call "statistical"
We study the scaling of the number of statistical scars with system size.
arXiv Detail & Related papers (2021-07-02T07:53:09Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.