Detecting Neighborhood Gentrification at Scale via Street-level Visual
Data
- URL: http://arxiv.org/abs/2301.01842v1
- Date: Wed, 4 Jan 2023 22:52:29 GMT
- Title: Detecting Neighborhood Gentrification at Scale via Street-level Visual
Data
- Authors: Tianyuan Huang, Timothy Dai, Zhecheng Wang, Hesu Yoon, Hao Sheng,
Andrew Y. Ng, Ram Rajagopal, Jackelyn Hwang
- Abstract summary: We propose a novel approach to detecting neighborhood gentrification at a large-scale based on the physical appearance of neighborhoods.
We show the effectiveness of the proposed method by comparing results from our approach with gentrification measures from previous literature and case studies.
- Score: 13.43323482272063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neighborhood gentrification plays a significant role in shaping the social
and economic well-being of both individuals and communities at large. While
some efforts have been made to detect gentrification in cities, existing
approaches rely mainly on estimated measures from survey data, require
substantial work of human labeling, and are limited in characterizing the
neighborhood as a whole. We propose a novel approach to detecting neighborhood
gentrification at a large-scale based on the physical appearance of
neighborhoods by incorporating historical street-level visual data. We show the
effectiveness of the proposed method by comparing results from our approach
with gentrification measures from previous literature and case studies. Our
approach has the potential to supplement existing indicators of gentrification
and become a valid resource for urban researchers and policy makers.
Related papers
- Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - A graph-based multimodal framework to predict gentrification [4.429604861456339]
We propose a novel graph-based multimodal deep learning framework to predict gentrification based on urban networks of tracts and essential facilities.
We train and test the proposed framework using data from Chicago, New York City, and Los Angeles.
The model successfully predicts census-tract level gentrification with 0.9 precision on average.
arXiv Detail & Related papers (2023-12-25T08:20:50Z) - Granularity at Scale: Estimating Neighborhood Socioeconomic Indicators
from High-Resolution Orthographic Imagery and Hybrid Learning [1.8369448205408005]
Overhead images can help fill in the gaps where community information is sparse.
Recent advancements in machine learning and computer vision have made it possible to quickly extract features from and detect patterns in image data.
In this work, we explore how well two approaches, a supervised convolutional neural network and semi-supervised clustering can estimate population density, median household income, and educational attainment.
arXiv Detail & Related papers (2023-09-28T19:30:26Z) - City-Wide Perceptions of Neighbourhood Quality using Street View Images [5.340189314359048]
This paper describes our methodology, based in London, including collection of images and ratings, web development, model training and mapping.
Perceived neighbourhood quality is a core component of urban vitality, influencing social cohesion, sense of community, safety, activity and mental health of residents.
arXiv Detail & Related papers (2022-11-22T10:16:35Z) - Learning Neighborhood Representation from Multi-Modal Multi-Graph:
Image, Text, Mobility Graph and Beyond [20.014906526266795]
We propose a novel approach to integrate multi-modal geotagged inputs as either node or edge features of a multi-graph.
Specifically, we use street view images and POI features to characterize neighborhoods (nodes) and use human mobility to characterize the relationship between neighborhoods (directed edges)
The embedding we trained outperforms the ones using only unimodal data as regional inputs.
arXiv Detail & Related papers (2021-05-06T07:44:05Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z) - Deploying machine learning to assist digital humanitarians: making image
annotation in OpenStreetMap more efficient [72.44260113860061]
We propose an interactive method to support and optimize the work of volunteers in OpenStreetMap.
The proposed method greatly reduces the amount of data that the volunteers of OSM need to verify/correct.
arXiv Detail & Related papers (2020-09-17T10:05:30Z) - Predicting Livelihood Indicators from Community-Generated Street-Level
Imagery [70.5081240396352]
We propose an inexpensive, scalable, and interpretable approach to predict key livelihood indicators from public crowd-sourced street-level imagery.
By comparing our results against ground data collected in nationally-representative household surveys, we demonstrate the performance of our approach in accurately predicting indicators of poverty, population, and health.
arXiv Detail & Related papers (2020-06-15T18:12:12Z) - Entropy as a measure of attractiveness and socioeconomic complexity in
Rio de Janeiro metropolitan area [52.77024349608834]
We use a mobile phone dataset and an entropy-based metric to measure the attractiveness of a location.
The results show that the attractiveness of a given location measured by entropy is an important descriptor of the socioeconomic status of the location.
arXiv Detail & Related papers (2020-03-23T15:58:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.