Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution
- URL: http://arxiv.org/abs/2301.02068v1
- Date: Thu, 5 Jan 2023 13:59:29 GMT
- Title: Towards Long-Term Time-Series Forecasting: Feature, Pattern, and
Distribution
- Authors: Yan Li, Xinjiang Lu, Haoyi Xiong, Jian Tang, Jiantao Su, Bo Jin,
Dejing Dou
- Abstract summary: Long-term time-series forecasting (LTTF) has become a pressing demand in many applications, such as wind power supply planning.
Transformer models have been adopted to deliver high prediction capacity because of the high computational self-attention mechanism.
We propose an efficient Transformerbased model, named Conformer, which differentiates itself from existing methods for LTTF in three aspects.
- Score: 57.71199089609161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Long-term time-series forecasting (LTTF) has become a pressing demand in many
applications, such as wind power supply planning. Transformer models have been
adopted to deliver high prediction capacity because of the high computational
self-attention mechanism. Though one could lower the complexity of Transformers
by inducing the sparsity in point-wise self-attentions for LTTF, the limited
information utilization prohibits the model from exploring the complex
dependencies comprehensively. To this end, we propose an efficient
Transformerbased model, named Conformer, which differentiates itself from
existing methods for LTTF in three aspects: (i) an encoder-decoder architecture
incorporating a linear complexity without sacrificing information utilization
is proposed on top of sliding-window attention and Stationary and Instant
Recurrent Network (SIRN); (ii) a module derived from the normalizing flow is
devised to further improve the information utilization by inferring the outputs
with the latent variables in SIRN directly; (iii) the inter-series correlation
and temporal dynamics in time-series data are modeled explicitly to fuel the
downstream self-attention mechanism. Extensive experiments on seven real-world
datasets demonstrate that Conformer outperforms the state-of-the-art methods on
LTTF and generates reliable prediction results with uncertainty quantification.
Related papers
- LSEAttention is All You Need for Time Series Forecasting [0.0]
Transformer-based architectures have achieved remarkable success in natural language processing and computer vision.
I introduce textbfLSEAttention, an approach designed to address entropy collapse and training instability commonly observed in transformer models.
arXiv Detail & Related papers (2024-10-31T09:09:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - PDMLP: Patch-based Decomposed MLP for Long-Term Time Series Forecasting [0.0]
Recent studies have attempted to refine the Transformer architecture to demonstrate its effectiveness in Long-Term Time Series Forecasting (LTSF) tasks.
We attribute the effectiveness of these models largely to the adopted Patch mechanism, which enhances sequence locality.
Further investigation suggests that simple linear layers augmented with the Patch mechanism may outperform complex Transformer-based LTSF models.
arXiv Detail & Related papers (2024-05-22T12:12:20Z) - Diagnostic Spatio-temporal Transformer with Faithful Encoding [54.02712048973161]
This paper addresses the task of anomaly diagnosis when the underlying data generation process has a complex-temporal (ST) dependency.
We formalize the problem as supervised dependency discovery, where the ST dependency is learned as a side product of time-series classification.
We show that temporal positional encoding used in existing ST transformer works has a serious limitation capturing frequencies in higher frequencies (short time scales)
We also propose a new ST dependency discovery framework, which can provide readily consumable diagnostic information in both spatial and temporal directions.
arXiv Detail & Related papers (2023-05-26T05:31:23Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - CLMFormer: Mitigating Data Redundancy to Revitalize Transformer-based
Long-Term Time Series Forecasting System [46.39662315849883]
Long-term time-series forecasting (LTSF) plays a crucial role in various practical applications.
Existing Transformer-based models, such as Fedformer and Informer, often achieve their best performances on validation sets after just a few epochs.
We propose a novel approach to address this issue by employing curriculum learning and introducing a memory-driven decoder.
arXiv Detail & Related papers (2022-07-16T04:05:15Z) - TCCT: Tightly-Coupled Convolutional Transformer on Time Series
Forecasting [6.393659160890665]
We propose the concept of tightly-coupled convolutional Transformer(TCCT) and three TCCT architectures.
Our experiments on real-world datasets show that our TCCT architectures could greatly improve the performance of existing state-of-art Transformer models.
arXiv Detail & Related papers (2021-08-29T08:49:31Z) - Informer: Beyond Efficient Transformer for Long Sequence Time-Series
Forecasting [25.417560221400347]
Long sequence time-series forecasting (LSTF) demands a high prediction capacity.
Recent studies have shown the potential of Transformer to increase the prediction capacity.
We design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics.
arXiv Detail & Related papers (2020-12-14T11:43:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.