Quantum synchronization effects induced by strong nonlinearities
- URL: http://arxiv.org/abs/2301.02948v2
- Date: Wed, 21 Jun 2023 01:39:08 GMT
- Title: Quantum synchronization effects induced by strong nonlinearities
- Authors: Yuan Shen, Wai-Keong Mok, Changsuk Noh, Ai Qun Liu, Leong-Chuan Kwek,
Weijun Fan, and Andy Chia
- Abstract summary: A paradigm for quantum synchronization is the quantum analog of the Stuart--Landau oscillator.
We propose an alternative model which approximates the van der Pol oscillator to finitely large nonlinearities.
This allows us to uncover interesting phenomena in the deep-quantum strongly-nonlinear regime.
- Score: 20.349629851043147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A paradigm for quantum synchronization is the quantum analog of the
Stuart--Landau oscillator, which corresponds to a van der Pol oscillator in the
limit of weak (i.e. vanishingly small) nonlinearity. Due to this limitation,
the quantum Stuart--Landau oscillator fails to capture interesting
nonlinearity-induced phenomena such as relaxation oscillations. To overcome
this deficiency we propose an alternative model which approximates the van der
Pol oscillator to finitely large nonlinearities while remaining numerically
tractable. This allows us to uncover interesting phenomena in the deep-quantum
strongly-nonlinear regime with no classical analog, such as the persistence of
amplitude death on resonance. We also report nonlinearity-induced position
correlations in reactively coupled quantum oscillators. Such coupled
oscillations become more and more correlated with increasing nonlinearity
before reaching some maximum. Again, this behavior is absent classically. We
also show how strong nonlinearity can enlarge the synchronization bandwidth in
both single and coupled oscillators. This effect can be harnessed to induce
mutual synchronization between two oscillators initially in amplitude death.
Related papers
- Josephson bifurcation readout: beyond the monochromatic approximation [49.1574468325115]
We analyze properties of bifurcation quantum detectors based on weakly nonlinear superconducting resonance circuits.
This circuit can serve as an efficient detector of the quantum state of superconducting qubits.
arXiv Detail & Related papers (2024-05-25T22:22:37Z) - Driven generalized quantum Rayleigh-van der Pol oscillators: Phase
localization and spectral response [0.0]
This work considers the classically driven generalized quantum Rayleigh-van der Pol oscillator.
Two non-linear terms break the rotational phase space symmetry, Wigner distribution of quantum mechanical limit cycle state is not rotationally symmetric.
Phase localization and frequency entrainment, which are required for synchronization, are discussed in detail.
Several observables are found to exhibit the analog of the celebrated classical Arnold tongue.
arXiv Detail & Related papers (2024-01-08T11:19:51Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Radiation statistics of a degenerate parametric oscillator at threshold [0.0]
We study the statistics of the radiation emitted by a degenerate parametric oscillator at threshold.
We find that the cumulants obey a universal power-law scaling as a function of the nonlinearity.
We predict a certain ratio of the first three cumulants to be independent of the microscopic details of the system.
arXiv Detail & Related papers (2022-08-31T14:25:23Z) - Quantum Synchronization in quadratically coupled quantum van der Pol
oscillators [0.0]
We study the quantum synchronization in two oscillator models, coupled quantum van der Pol oscillators and anharmonic self-oscillators.
We show that the considered systems exhibit a high-order synchronization through coupling in both classical and quantum domains.
We propose a possible experimental realization for the considered system in trapped ion and optomechanical setting.
arXiv Detail & Related papers (2022-07-04T11:30:42Z) - Structurally stable subharmonic regime of a driven quantum Josephson
circuit [0.0]
We provide a recipe for the choice of the parameters that ensures a regular dynamical behavior independently of the driving strength.
We show that this suppression of chaotic phenomena is compatible with a strong quantum nonlinear effect reflected by the confinement rate in the degenerate manifold spanned by stable subharmonic orbits.
arXiv Detail & Related papers (2022-06-29T13:24:26Z) - In-Gap Band Formation in a Periodically Driven Charge Density Wave
Insulator [68.8204255655161]
Periodically driven quantum many-body systems host unconventional behavior not realized at equilibrium.
We investigate such a setup for strongly interacting spinless fermions on a chain, which at zero temperature and strong interactions form a charge density wave insulator.
arXiv Detail & Related papers (2022-05-19T13:28:47Z) - Bistability and chaos-assisted tunneling in the dissipative quantum
systems [0.0]
We revisit the problem of quantum bi- and multi-stability by considering the dissipative Double Resonance Model.
This allows us to address a novel phenomenon of dissipation- and chaos-assisted tunneling between quantum limits cycles.
arXiv Detail & Related papers (2022-04-14T13:15:36Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.