Enhancing ResNet Image Classification Performance by using Parameterized
Hypercomplex Multiplication
- URL: http://arxiv.org/abs/2301.04623v1
- Date: Wed, 11 Jan 2023 18:24:07 GMT
- Title: Enhancing ResNet Image Classification Performance by using Parameterized
Hypercomplex Multiplication
- Authors: Nazmul Shahadat, Anthony S. Maida
- Abstract summary: This paper studies ResNet architectures and incorporates parameterized hypercomplex multiplication into the backend of residual, quaternion, and vectormap convolutional neural networks to assess the effect.
We show that PHM does improve classification accuracy performance on several image datasets, including small, low-resolution CIFAR 10/100 and large high-resolution ImageNet and ASL, and can achieve state-of-the-art accuracy for hypercomplex networks.
- Score: 1.370633147306388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, many deep networks have introduced hypercomplex and related
calculations into their architectures. In regard to convolutional networks for
classification, these enhancements have been applied to the convolution
operations in the frontend to enhance accuracy and/or reduce the parameter
requirements while maintaining accuracy. Although these enhancements have been
applied to the convolutional frontend, it has not been studied whether adding
hypercomplex calculations improves performance when applied to the densely
connected backend. This paper studies ResNet architectures and incorporates
parameterized hypercomplex multiplication (PHM) into the backend of residual,
quaternion, and vectormap convolutional neural networks to assess the effect.
We show that PHM does improve classification accuracy performance on several
image datasets, including small, low-resolution CIFAR 10/100 and large
high-resolution ImageNet and ASL, and can achieve state-of-the-art accuracy for
hypercomplex networks.
Related papers
- On the growth of the parameters of approximating ReLU neural networks [0.542249320079018]
This work focuses on the analysis of fully connected feed forward ReLU neural networks as they approximate a given, smooth function.
In contrast to conventionally studied universal approximation properties under increasing architectures, we are concerned with the growth of the parameters of approximating networks.
arXiv Detail & Related papers (2024-06-21T07:45:28Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
Training a high-quality deep neural network requires choosing suitable hyperparameters, which is a non-trivial and expensive process.
In this work, we precisely characterize the dependence of initializations and maximal learning rates on the network architecture.
We demonstrate that network rankings can be easily changed by better training networks in benchmarks.
arXiv Detail & Related papers (2024-02-27T11:52:49Z) - A Generalization of Continuous Relaxation in Structured Pruning [0.3277163122167434]
Trends indicate that deeper and larger neural networks with an increasing number of parameters achieve higher accuracy than smaller neural networks.
We generalize structured pruning with algorithms for network augmentation, pruning, sub-network collapse and removal.
The resulting CNN executes efficiently on GPU hardware without computationally expensive sparse matrix operations.
arXiv Detail & Related papers (2023-08-28T14:19:13Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Deep Axial Hypercomplex Networks [1.370633147306388]
Recent works make it possible to improve representational capabilities by using hypercomplex-inspired networks.
This paper reduces this cost by factorizing a quaternion 2D convolutional module into two consecutive vectormap 1D convolutional modules.
Incorporating both yields our proposed hypercomplex network, a novel architecture that can be assembled to construct deep axial-hypercomplex networks.
arXiv Detail & Related papers (2023-01-11T18:31:00Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Image Superresolution using Scale-Recurrent Dense Network [30.75380029218373]
Recent advances in the design of convolutional neural network (CNN) have yielded significant improvements in the performance of image super-resolution (SR)
We propose a scale recurrent SR architecture built upon units containing series of dense connections within a residual block (Residual Dense Blocks (RDBs))
Our scale recurrent design delivers competitive performance for higher scale factors while being parametrically more efficient as compared to current state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-28T09:18:43Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
We introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model.
We show that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.
arXiv Detail & Related papers (2020-08-05T22:10:29Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.