Opti-CAM: Optimizing saliency maps for interpretability
- URL: http://arxiv.org/abs/2301.07002v3
- Date: Fri, 5 Apr 2024 16:50:13 GMT
- Title: Opti-CAM: Optimizing saliency maps for interpretability
- Authors: Hanwei Zhang, Felipe Torres, Ronan Sicre, Yannis Avrithis, Stephane Ayache,
- Abstract summary: We introduce Opti-CAM, combining ideas from CAM-based and masking-based approaches.
Our saliency map is a linear combination of feature maps, where weights are optimized per image.
On several datasets, Opti-CAM largely outperforms other CAM-based approaches according to the most relevant classification metrics.
- Score: 10.122899813335694
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Methods based on class activation maps (CAM) provide a simple mechanism to interpret predictions of convolutional neural networks by using linear combinations of feature maps as saliency maps. By contrast, masking-based methods optimize a saliency map directly in the image space or learn it by training another network on additional data. In this work we introduce Opti-CAM, combining ideas from CAM-based and masking-based approaches. Our saliency map is a linear combination of feature maps, where weights are optimized per image such that the logit of the masked image for a given class is maximized. We also fix a fundamental flaw in two of the most common evaluation metrics of attribution methods. On several datasets, Opti-CAM largely outperforms other CAM-based approaches according to the most relevant classification metrics. We provide empirical evidence supporting that localization and classifier interpretability are not necessarily aligned.
Related papers
- DecomCAM: Advancing Beyond Saliency Maps through Decomposition and Integration [25.299607743268993]
Class Activation Map (CAM) methods highlight regions revealing the model's decision-making basis but lack clear saliency maps and detailed interpretability.
We propose DecomCAM, a novel decomposition-and-integration method that distills shared patterns from channel activation maps.
Experiments reveal that DecomCAM not only excels in locating accuracy but also achieves an optimizing balance between interpretability and computational efficiency.
arXiv Detail & Related papers (2024-05-29T08:40:11Z) - BroadCAM: Outcome-agnostic Class Activation Mapping for Small-scale
Weakly Supervised Applications [69.22739434619531]
We propose an outcome-agnostic CAM approach, called BroadCAM, for small-scale weakly supervised applications.
By evaluating BroadCAM on VOC2012 and BCSS-WSSS for WSSS and OpenImages30k for WSOL, BroadCAM demonstrates superior performance.
arXiv Detail & Related papers (2023-09-07T06:45:43Z) - Fine-grained Recognition with Learnable Semantic Data Augmentation [68.48892326854494]
Fine-grained image recognition is a longstanding computer vision challenge.
We propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem.
Our method significantly improves the generalization performance on several popular classification networks.
arXiv Detail & Related papers (2023-09-01T11:15:50Z) - Feature Activation Map: Visual Explanation of Deep Learning Models for
Image Classification [17.373054348176932]
In this work, a post-hoc interpretation tool named feature activation map (FAM) is proposed.
FAM can interpret deep learning models without FC layers as a classifier.
Experiments conducted on ten deep learning models for few-shot image classification, contrastive learning image classification and image retrieval tasks demonstrate the effectiveness of the proposed FAM algorithm.
arXiv Detail & Related papers (2023-07-11T05:33:46Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
Image-level weakly-supervised segmentation (WSSS) reduces the usually vast data annotation cost by surrogate segmentation masks during training.
Our work is based on two techniques for improving CAMs; importance sampling, which is a substitute for GAP, and the feature similarity loss.
We reformulate both techniques based on binomial posteriors of multiple independent binary problems.
This has two benefits; their performance is improved and they become more general, resulting in an add-on method that can boost virtually any WSSS method.
arXiv Detail & Related papers (2023-04-05T17:43:57Z) - VS-CAM: Vertex Semantic Class Activation Mapping to Interpret Vision
Graph Neural Network [10.365366151667017]
Graph convolutional neural network (GCN) has drawn increasing attention and attained good performance in various computer vision tasks.
For standard convolutional neural networks (CNNs), class activation mapping (CAM) methods are commonly used to visualize the connection between CNN's decision and image region by generating a heatmap.
In this paper, we proposed a novel visualization method particularly applicable to GCN, Vertex Semantic Class Activation Mapping (VS-CAM)
arXiv Detail & Related papers (2022-09-15T09:45:59Z) - Shap-CAM: Visual Explanations for Convolutional Neural Networks based on
Shapley Value [86.69600830581912]
We develop a novel visual explanation method called Shap-CAM based on class activation mapping.
We demonstrate that Shap-CAM achieves better visual performance and fairness for interpreting the decision making process.
arXiv Detail & Related papers (2022-08-07T00:59:23Z) - Revisiting The Evaluation of Class Activation Mapping for
Explainability: A Novel Metric and Experimental Analysis [54.94682858474711]
Class Activation Mapping (CAM) approaches provide an effective visualization by taking weighted averages of the activation maps.
We propose a novel set of metrics to quantify explanation maps, which show better effectiveness and simplify comparisons between approaches.
arXiv Detail & Related papers (2021-04-20T21:34:24Z) - LIFT-CAM: Towards Better Explanations for Class Activation Mapping [0.0]
Class activation mapping (CAM) based methods generate visual explanation maps by a linear combination of activation maps from CNNs.
We introduce an efficient approximation method, referred to as LIFT-CAM.
It achieves better performances than the other previous CAM-based methods in qualitative and quantitative aspects.
arXiv Detail & Related papers (2021-02-10T02:43:50Z) - Mixup-CAM: Weakly-supervised Semantic Segmentation via Uncertainty
Regularization [73.03956876752868]
We propose a principled and end-to-end train-able framework to allow the network to pay attention to other parts of the object.
Specifically, we introduce the mixup data augmentation scheme into the classification network and design two uncertainty regularization terms to better interact with the mixup strategy.
arXiv Detail & Related papers (2020-08-03T21:19:08Z) - A Flexible Framework for Designing Trainable Priors with Adaptive
Smoothing and Game Encoding [57.1077544780653]
We introduce a general framework for designing and training neural network layers whose forward passes can be interpreted as solving non-smooth convex optimization problems.
We focus on convex games, solved by local agents represented by the nodes of a graph and interacting through regularization functions.
This approach is appealing for solving imaging problems, as it allows the use of classical image priors within deep models that are trainable end to end.
arXiv Detail & Related papers (2020-06-26T08:34:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.