Complexity Analysis of a Countable-armed Bandit Problem
- URL: http://arxiv.org/abs/2301.07243v1
- Date: Wed, 18 Jan 2023 00:53:46 GMT
- Title: Complexity Analysis of a Countable-armed Bandit Problem
- Authors: Anand Kalvit and Assaf Zeevi
- Abstract summary: We study the classical problem of minimizing the expected cumulative regret over a horizon of play $n$.
We propose algorithms that achieve a rate-optimal finite-time instance-dependent regret of $mathcalOleft( log n right)$ when $K=2$.
While the order of regret and complexity of the problem suggests a great degree of similarity to the classical MAB problem, properties of the performance bounds and salient aspects of algorithm design are quite distinct from the latter.
- Score: 9.163501953373068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a stochastic multi-armed bandit (MAB) problem motivated by
``large'' action spaces, and endowed with a population of arms containing
exactly $K$ arm-types, each characterized by a distinct mean reward. The
decision maker is oblivious to the statistical properties of reward
distributions as well as the population-level distribution of different
arm-types, and is precluded also from observing the type of an arm after play.
We study the classical problem of minimizing the expected cumulative regret
over a horizon of play $n$, and propose algorithms that achieve a rate-optimal
finite-time instance-dependent regret of $\mathcal{O}\left( \log n \right)$. We
also show that the instance-independent (minimax) regret is
$\tilde{\mathcal{O}}\left( \sqrt{n} \right)$ when $K=2$. While the order of
regret and complexity of the problem suggests a great degree of similarity to
the classical MAB problem, properties of the performance bounds and salient
aspects of algorithm design are quite distinct from the latter, as are the key
primitives that determine complexity along with the analysis tools needed to
study them.
Related papers
- A General Framework for Clustering and Distribution Matching with Bandit Feedback [81.50716021326194]
We develop a general framework for clustering and distribution matching problems with bandit feedback.
We derive a non-asymptotic lower bound on the average number of arm pulls for any online algorithm with an error probability not exceeding $delta$.
arXiv Detail & Related papers (2024-09-08T12:19:12Z) - Representative Arm Identification: A fixed confidence approach to identify cluster representatives [7.459521930846415]
We study the representative arm identification problem in the multi-armed bandits (MAB) framework.
The RAI problem covers as special cases several well-studied MAB problems such as identifying the best arm or any $M$ out of the top $K$.
We propose two algorithms, based on the idea of confidence intervals, and provide high probability upper bounds on their sample complexity.
arXiv Detail & Related papers (2024-08-26T11:47:52Z) - Pure Exploration for Constrained Best Mixed Arm Identification with a Fixed Budget [6.22018632187078]
We introduce the constrained best mixed arm identification (CBMAI) problem with a fixed budget.
The goal is to find the best mixed arm that maximizes the expected reward subject to constraints on the expected costs with a given learning budget $N$.
We provide a theoretical upper bound on the mis-identification (of the the support of the best mixed arm) probability and show that it decays exponentially in the budget $N$.
arXiv Detail & Related papers (2024-05-23T22:35:11Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Stochastic Rising Bandits [40.32303434592863]
We study a particular case of the rested and restless bandits in which the arms' expected payoff is monotonically non-decreasing.
This characteristic allows designing specifically crafted algorithms that exploit the regularity of the payoffs to provide tight regret bounds.
We empirically compare our algorithms with state-of-the-art methods for non-stationary MABs over several synthetically generated tasks and an online model selection problem for a real-world dataset.
arXiv Detail & Related papers (2022-12-07T17:30:45Z) - Constrained Pure Exploration Multi-Armed Bandits with a Fixed Budget [4.226118870861363]
We consider a constrained, pure exploration, multi-armed bandit formulation under a fixed budget.
We propose an algorithm called textscConstrained-SR based on the Successive Rejects framework.
We show that the associated decay rate is nearly optimal relative to an information theoretic lower bound in certain special cases.
arXiv Detail & Related papers (2022-11-27T08:58:16Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - Problem Dependent View on Structured Thresholding Bandit Problems [73.70176003598449]
We investigate the problem dependent regime in the Thresholding Bandit problem (TBP)
The objective of the learner is to output, at the end of a sequential game, the set of arms whose means are above a given threshold.
We provide upper and lower bounds for the probability of error in both the concave and monotone settings.
arXiv Detail & Related papers (2021-06-18T15:01:01Z) - Recurrent Submodular Welfare and Matroid Blocking Bandits [22.65352007353614]
A recent line of research focuses on the study of the multi-armed bandits problem (MAB)
We develop new algorithmic ideas that allow us to obtain a $ (1 - frac1e)$-approximation for any matroid.
A key ingredient is the technique of correlated (interleaved) scheduling.
arXiv Detail & Related papers (2021-01-30T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.