MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation
- URL: http://arxiv.org/abs/2301.07354v2
- Date: Sat, 8 Jul 2023 08:15:54 GMT
- Title: MADAv2: Advanced Multi-Anchor Based Active Domain Adaptation
Segmentation
- Authors: Munan Ning, Donghuan Lu, Yujia Xie, Dongdong Chen, Dong Wei, Yefeng
Zheng, Yonghong Tian, Shuicheng Yan, Li Yuan
- Abstract summary: We introduce active sample selection to assist domain adaptation regarding the semantic segmentation task.
With only a little workload to manually annotate these samples, the distortion of the target-domain distribution can be effectively alleviated.
A powerful semi-supervised domain adaptation strategy is proposed to alleviate the long-tail distribution problem.
- Score: 98.09845149258972
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaption has been widely adopted in tasks with scarce
annotated data. Unfortunately, mapping the target-domain distribution to the
source-domain unconditionally may distort the essential structural information
of the target-domain data, leading to inferior performance. To address this
issue, we firstly propose to introduce active sample selection to assist domain
adaptation regarding the semantic segmentation task. By innovatively adopting
multiple anchors instead of a single centroid, both source and target domains
can be better characterized as multimodal distributions, in which way more
complementary and informative samples are selected from the target domain. With
only a little workload to manually annotate these active samples, the
distortion of the target-domain distribution can be effectively alleviated,
achieving a large performance gain. In addition, a powerful semi-supervised
domain adaptation strategy is proposed to alleviate the long-tail distribution
problem and further improve the segmentation performance. Extensive experiments
are conducted on public datasets, and the results demonstrate that the proposed
approach outperforms state-of-the-art methods by large margins and achieves
similar performance to the fully-supervised upperbound, i.e., 71.4% mIoU on
GTA5 and 71.8% mIoU on SYNTHIA. The effectiveness of each component is also
verified by thorough ablation studies.
Related papers
- Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - Multi-Anchor Active Domain Adaptation for Semantic Segmentation [25.93409207335442]
Unsupervised domain adaption has proven to be an effective approach for alleviating the intensive workload of manual annotation.
We propose to introduce a novel multi-anchor based active learning strategy to assist domain adaptation regarding the semantic segmentation task.
arXiv Detail & Related papers (2021-08-18T07:33:13Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Effective Label Propagation for Discriminative Semi-Supervised Domain
Adaptation [76.41664929948607]
Semi-supervised domain adaptation (SSDA) methods have demonstrated great potential in large-scale image classification tasks.
We present a novel and effective method to tackle this problem by using effective inter-domain and intra-domain semantic information propagation.
Our source code and pre-trained models will be released soon.
arXiv Detail & Related papers (2020-12-04T14:28:19Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z) - Domain Adaptation by Class Centroid Matching and Local Manifold
Self-Learning [8.316259570013813]
We propose a novel domain adaptation approach, which can thoroughly explore the data distribution structure of target domain.
We regard the samples within the same cluster in target domain as a whole rather than individuals and assigns pseudo-labels to the target cluster by class centroid matching.
An efficient iterative optimization algorithm is designed to solve the objective function of our proposal with theoretical convergence guarantee.
arXiv Detail & Related papers (2020-03-20T16:59:27Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.