What's happening in your neighborhood? A Weakly Supervised Approach to Detect Local News
- URL: http://arxiv.org/abs/2301.08146v3
- Date: Wed, 5 Jun 2024 22:50:00 GMT
- Title: What's happening in your neighborhood? A Weakly Supervised Approach to Detect Local News
- Authors: Deven Santosh Shah, Shiying He, Gosuddin Kamaruddin Siddiqi, Radhika Bansal,
- Abstract summary: We develop an integrated pipeline that enables automatic local news detection and content-based local news recommendations.
Compared with Stanford Core NER model, our pipeline has higher precision and recall evaluated on a real-world and human-labeled dataset.
- Score: 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Local news articles are a subset of news that impact users in a geographical area, such as a city, county, or state. Detecting local news (Step 1) and subsequently deciding its geographical location as well as radius of impact (Step 2) are two important steps towards accurate local news recommendation. Naive rule-based methods, such as detecting city names from the news title, tend to give erroneous results due to lack of understanding of the news content. Empowered by the latest development in natural language processing, we develop an integrated pipeline that enables automatic local news detection and content-based local news recommendations. In this paper, we focus on Step 1 of the pipeline, which highlights: (1) a weakly supervised framework incorporated with domain knowledge and auto data processing, and (2) scalability to multi-lingual settings. Compared with Stanford CoreNLP NER model, our pipeline has higher precision and recall evaluated on a real-world and human-labeled dataset. This pipeline has potential to more precise local news to users, helps local businesses get more exposure, and gives people more information about their neighborhood safety.
Related papers
- ContCommRTD: A Distributed Content-based Misinformation-aware Community
Detection System for Real-Time Disaster Reporting [0.5156484100374059]
We propose a novel distributed system that provides in near real-time information on hazard-related events and their evolution.
Our distributed disaster reporting system analyzes the social relationship among worldwide geolocated tweets.
As misinformation can lead to increase damage if propagated in hazards related tweets, we propose a new deep learning model to detect fake news.
arXiv Detail & Related papers (2023-01-30T15:28:47Z) - Nothing Stands Alone: Relational Fake News Detection with Hypergraph
Neural Networks [49.29141811578359]
We propose to leverage a hypergraph to represent group-wise interaction among news, while focusing on important news relations with its dual-level attention mechanism.
Our approach yields remarkable performance and maintains the high performance even with a small subset of labeled news data.
arXiv Detail & Related papers (2022-12-24T00:19:32Z) - Multilingual News Location Detection using an Entity-Based Siamese
Network with Semi-Supervised Contrastive Learning and Knowledge Base [0.7734726150561089]
Early detection of relevant locations in a piece of news is important in extreme events such as environmental disasters, war conflicts, disease outbreaks, or political turmoils.
We propose a system that infers the relevant locations even when they are not mentioned explicitly in the text.
We contribute to the research community with a gold-standard multilingual news-location dataset, NewsLOC.
arXiv Detail & Related papers (2022-12-22T16:42:21Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - LocUNet: Fast Urban Positioning Using Radio Maps and Deep Learning [59.17191114000146]
LocUNet: A deep learning method for localization, based merely on Received Signal Strength (RSS) from Base Stations (BSs)
In the proposed method, the user to be localized reports the RSS from BSs to a Central Processing Unit ( CPU) which may be located in the cloud.
Using estimated pathloss radio maps of the BSs, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the radio maps.
arXiv Detail & Related papers (2022-02-01T20:27:46Z) - Automated Fake News Detection using cross-checking with reliable sources [0.0]
We use natural human behavior to cross-check new information with reliable sources.
We implement this for Twitter and build a model that flags fake tweets.
Our implementation of this approach gives a $70%$ accuracy which outperforms other generic fake-news classification models.
arXiv Detail & Related papers (2022-01-01T00:59:58Z) - Embracing Domain Differences in Fake News: Cross-domain Fake News
Detection using Multi-modal Data [18.66426327152407]
We propose a novel framework that jointly preserves domain-specific and cross-domain knowledge in news records to detect fake news from different domains.
Our experiments show that the integration of the proposed fake news model and the selective annotation approach achieves state-of-the-art performance for cross-domain news datasets.
arXiv Detail & Related papers (2021-02-11T23:31:14Z) - Real-time Localization Using Radio Maps [59.17191114000146]
We present a simple yet effective method for localization based on pathloss.
In our approach, the user to be localized reports the received signal strength from a set of base stations with known locations.
arXiv Detail & Related papers (2020-06-09T16:51:17Z) - BanFakeNews: A Dataset for Detecting Fake News in Bangla [1.4170999534105675]
We propose an annotated dataset of 50K news that can be used for building automated fake news detection systems.
We develop a benchmark system with state of the art NLP techniques to identify Bangla fake news.
arXiv Detail & Related papers (2020-04-19T07:42:22Z) - Graph Enhanced Representation Learning for News Recommendation [85.3295446374509]
We propose a news recommendation method which can enhance the representation learning of users and news.
In our method, users and news are both viewed as nodes in a bipartite graph constructed from historical user click behaviors.
arXiv Detail & Related papers (2020-03-31T15:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.