Exploring ordered patterns in the adjacency matrix for improving machine
learning on complex networks
- URL: http://arxiv.org/abs/2301.08364v1
- Date: Fri, 20 Jan 2023 00:01:23 GMT
- Title: Exploring ordered patterns in the adjacency matrix for improving machine
learning on complex networks
- Authors: Mariane B. Neiva, Odemir M. Bruno
- Abstract summary: The proposed methodology employs a sorting algorithm to rearrange the elements of the adjacency matrix of a complex graph in a specific order.
The resulting sorted adjacency matrix is then used as input for feature extraction and machine learning algorithms to classify the networks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The use of complex networks as a modern approach to understanding the world
and its dynamics is well-established in literature. The adjacency matrix, which
provides a one-to-one representation of a complex network, can also yield
several metrics of the graph. However, it is not always clear that this
representation is unique, as the permutation of lines and rows in the matrix
can represent the same graph. To address this issue, the proposed methodology
employs a sorting algorithm to rearrange the elements of the adjacency matrix
of a complex graph in a specific order. The resulting sorted adjacency matrix
is then used as input for feature extraction and machine learning algorithms to
classify the networks. The results indicate that the proposed methodology
outperforms previous literature results on synthetic and real-world data.
Related papers
- Attributed Multi-order Graph Convolutional Network for Heterogeneous
Graphs [29.618952407794783]
We propose anAttributed Multi-Order Graph Convolutional Network (AMOGCN), which automatically studies meta-paths containing multi-hop neighbors.
AMOGCN gains superior semi-supervised classification performance compared with state-of-the-art competitors.
arXiv Detail & Related papers (2023-04-13T08:31:16Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Reinforcement Learning Based Query Vertex Ordering Model for Subgraph
Matching [58.39970828272366]
Subgraph matching algorithms enumerate all is embeddings of a query graph in a data graph G.
matching order plays a critical role in time efficiency of these backtracking based subgraph matching algorithms.
In this paper, for the first time we apply the Reinforcement Learning (RL) and Graph Neural Networks (GNNs) techniques to generate the high-quality matching order for subgraph matching algorithms.
arXiv Detail & Related papers (2022-01-25T00:10:03Z) - Matrix Completion with Hierarchical Graph Side Information [39.00971122472004]
We consider a matrix completion problem that exploits social or item similarity graphs as side information.
We develop a universal, parameter-free, and computationally efficient algorithm that starts with hierarchical graph clustering.
We conduct extensive experiments on synthetic and real-world datasets to corroborate our theoretical results.
arXiv Detail & Related papers (2022-01-02T03:47:41Z) - A Deep Generative Model for Matrix Reordering [26.86727566323601]
We develop a generative model that learns a latent space of diverse matrix reorderings of a graph.
We construct an intuitive user interface from the learned latent space by creating a map of various matrix reorderings.
This paper introduces a fundamentally new approach to matrix visualization of a graph, where a machine learning model learns to generate diverse matrix reorderings of a graph.
arXiv Detail & Related papers (2021-10-11T02:55:24Z) - Multiple Kernel Representation Learning on Networks [12.106994960669924]
We propose a weighted matrix factorization model that encodes random walk-based information about nodes of the network.
We extend the approach with a multiple kernel learning formulation that provides the flexibility of learning the kernel as the linear combination of a dictionary of kernels.
arXiv Detail & Related papers (2021-06-09T13:22:26Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Multi-View Spectral Clustering with High-Order Optimal Neighborhood
Laplacian Matrix [57.11971786407279]
Multi-view spectral clustering can effectively reveal the intrinsic cluster structure among data.
This paper proposes a multi-view spectral clustering algorithm that learns a high-order optimal neighborhood Laplacian matrix.
Our proposed algorithm generates the optimal Laplacian matrix by searching the neighborhood of the linear combination of both the first-order and high-order base.
arXiv Detail & Related papers (2020-08-31T12:28:40Z) - Eigendecomposition-Free Training of Deep Networks for Linear
Least-Square Problems [107.3868459697569]
We introduce an eigendecomposition-free approach to training a deep network.
We show that our approach is much more robust than explicit differentiation of the eigendecomposition.
Our method has better convergence properties and yields state-of-the-art results.
arXiv Detail & Related papers (2020-04-15T04:29:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.