Exploration of Various Fractional Order Derivatives in Parkinson's
Disease Dysgraphia Analysis
- URL: http://arxiv.org/abs/2301.08529v1
- Date: Fri, 20 Jan 2023 12:18:05 GMT
- Title: Exploration of Various Fractional Order Derivatives in Parkinson's
Disease Dysgraphia Analysis
- Authors: Jan Mucha, Zoltan Galaz, Jiri Mekyska, Marcos Faundez-Zanuy, Vojtech
Zvoncak, Zdenek Smekal, Lubos Brabenec, Irena Rektorova
- Abstract summary: Parkinson's disease (PD) is a common neurodegenerative disorder with a prevalence rate estimated to 2.0% for people aged over 65 years.
Recent research identified that the theory of fractional calculus can be used to improve the graphomotor difficulties analysis.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Parkinson's disease (PD) is a common neurodegenerative disorder with a
prevalence rate estimated to 2.0% for people aged over 65 years. Cardinal motor
symptoms of PD such as rigidity and bradykinesia affect the muscles involved in
the handwriting process resulting in handwriting abnormalities called PD
dysgraphia. Nowadays, online handwritten signal (signal with temporal
information) acquired by the digitizing tablets is the most advanced approach
of graphomotor difficulties analysis. Although the basic kinematic features
were proved to effectively quantify the symptoms of PD dysgraphia, a recent
research identified that the theory of fractional calculus can be used to
improve the graphomotor difficulties analysis. Therefore, in this study, we
follow up on our previous research, and we aim to explore the utilization of
various approaches of fractional order derivative (FD) in the analysis of PD
dysgraphia. For this purpose, we used the repetitive loops task from the
Parkinson's disease handwriting database (PaHaW). Handwritten signals were
parametrized by the kinematic features employing three FD approximations:
Gr\"unwald-Letnikov's, Riemann-Liouville's, and Caputo's. Results of the
correlation analysis revealed a significant relationship between the clinical
state and the handwriting features based on the velocity. The extracted
features by Caputo's FD approximation outperformed the rest of the analyzed FD
approaches. This was also confirmed by the results of the classification
analysis, where the best model trained by Caputo's handwriting features
resulted in a balanced accuracy of 79.73% with a sensitivity of 83.78% and a
specificity of 75.68%.
Related papers
- Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson's disease [0.3806074545662052]
The PaHaW Parkinson's disease handwriting database contains handwriting samples from Parkinson's disease (PD) patients and healthy controls.
We show that kinematic features and pressure features in handwriting can be used for the differential diagnosis of PD.
arXiv Detail & Related papers (2024-11-05T12:27:24Z) - AXIAL: Attention-based eXplainability for Interpretable Alzheimer's Localized Diagnosis using 2D CNNs on 3D MRI brain scans [43.06293430764841]
This study presents an innovative method for Alzheimer's disease diagnosis using 3D MRI designed to enhance the explainability of model decisions.
Our approach adopts a soft attention mechanism, enabling 2D CNNs to extract volumetric representations.
With voxel-level precision, our method identified which specific areas are being paid attention to, identifying these predominant brain regions.
arXiv Detail & Related papers (2024-07-02T16:44:00Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
sociodemographic prompting is a technique that steers the output of prompt-based models towards answers that humans with specific sociodemographic profiles would give.
We show that sociodemographic information affects model predictions and can be beneficial for improving zero-shot learning in subjective NLP tasks.
arXiv Detail & Related papers (2023-09-13T15:42:06Z) - Diagnosis of Parkinson's Disease Based on Voice Signals Using SHAP and
Hard Voting Ensemble Method [0.0]
Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's.
PD is typically identified using motor symptoms or other Neuroimaging techniques, such as DATSCAN and SPECT.
These methods are expensive, time-consuming, and unavailable to the general public.
arXiv Detail & Related papers (2022-10-03T19:45:22Z) - Contribution of Different Handwriting Modalities to Differential
Diagnosis of Parkinson's Disease [0.0]
In this paper, we evaluate the contribution of different handwriting modalities to the diagnosis of Parkinson's disease.
We show that pressure and in-air movement also possess information that is relevant for diagnosis of Parkinson's Disease from handwriting.
arXiv Detail & Related papers (2022-03-18T10:51:37Z) - Sequence-based Dynamic Handwriting Analysis for Parkinson's Disease
Detection with One-dimensional Convolutions and BiGRUs [5.936804438746453]
Parkinsons disease (PD) is commonly characterized by several motor symptoms such as bradykinesia akinesia, rigidity, and tremor.
The analysis of patients' fine motor control, particularly handwriting, is a powerful tool to support PD assessment.
This paper proposes a novel classification model based on one-directional convolutions and Bi Gated Recurrent Units (GRUs)
arXiv Detail & Related papers (2021-01-23T09:25:13Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Vision-based Estimation of MDS-UPDRS Gait Scores for Assessing
Parkinson's Disease Motor Severity [39.51722822896373]
Parkinson's disease (PD) is a progressive neurological disorder affecting motor function.
Physical severity of PD impairments can be quantified through the Movement Disorder Society Unified Parkinson's Disease Rating Scale.
We propose a computer vision-based model that observes non-intrusive video recordings of individuals, extracts their 3D body skeletons, tracks them through time, and classifies the movements according to the MDS-UPDRS gait scores.
arXiv Detail & Related papers (2020-07-17T11:49:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - Analysis and Evaluation of Handwriting in Patients with Parkinson's
Disease Using kinematic, Geometrical, and Non-linear Features [0.0]
Handwriting analysis can help in supporting the diagnosis and in monitoring the progress of Parkinson's disease.
This paper aims to evaluate the importance of different groups of features to model handwriting deficits that appear due to Parkinson's disease.
arXiv Detail & Related papers (2020-02-13T09:54:41Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.