STORM-GAN: Spatio-Temporal Meta-GAN for Cross-City Estimation of Human
Mobility Responses to COVID-19
- URL: http://arxiv.org/abs/2301.08648v1
- Date: Fri, 20 Jan 2023 15:55:41 GMT
- Title: STORM-GAN: Spatio-Temporal Meta-GAN for Cross-City Estimation of Human
Mobility Responses to COVID-19
- Authors: Han Bao, Xun Zhou, Yiqun Xie, Yanhua Li, Xiaowei Jia
- Abstract summary: We make the first attempt to tackle the cross-city human mobility estimation problem through a deep meta-generative framework.
We propose a S-Temporal Meta-Generative Adrial Network (STORM-GAN) model that estimates dynamic human mobility responses.
We show that the proposed approach can greatly improve estimation performance and out-perform baselines.
- Score: 17.611056163940404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human mobility estimation is crucial during the COVID-19 pandemic due to its
significant guidance for policymakers to make non-pharmaceutical interventions.
While deep learning approaches outperform conventional estimation techniques on
tasks with abundant training data, the continuously evolving pandemic poses a
significant challenge to solving this problem due to data nonstationarity,
limited observations, and complex social contexts. Prior works on mobility
estimation either focus on a single city or lack the ability to model the
spatio-temporal dependencies across cities and time periods. To address these
issues, we make the first attempt to tackle the cross-city human mobility
estimation problem through a deep meta-generative framework. We propose a
Spatio-Temporal Meta-Generative Adversarial Network (STORM-GAN) model that
estimates dynamic human mobility responses under a set of social and policy
conditions related to COVID-19. Facilitated by a novel spatio-temporal
task-based graph (STTG) embedding, STORM-GAN is capable of learning shared
knowledge from a spatio-temporal distribution of estimation tasks and quickly
adapting to new cities and time periods with limited training samples. The STTG
embedding component is designed to capture the similarities among cities to
mitigate cross-task heterogeneity. Experimental results on real-world data show
that the proposed approach can greatly improve estimation performance and
out-perform baselines.
Related papers
- ST-MoE-BERT: A Spatial-Temporal Mixture-of-Experts Framework for Long-Term Cross-City Mobility Prediction [6.0588503913405045]
We propose a robust approach to predict human mobility patterns called ST-MoE-BERT.
Our methodology integrates the Mixture-of-Experts architecture with BERT model to capture complex mobility dynamics.
We demonstrate the effectiveness of the proposed model on GEO-BLEU and DTW, comparing it to several state-of-the-art methods.
arXiv Detail & Related papers (2024-10-18T00:32:18Z) - Reconstructing Human Mobility Pattern: A Semi-Supervised Approach for Cross-Dataset Transfer Learning [10.864774173935535]
We have developed a model that reconstructs and learns human mobility patterns by focusing on semantic activity chains.
We introduce a semi-supervised iterative transfer learning algorithm to adapt models to diverse geographical contexts.
arXiv Detail & Related papers (2024-10-03T20:29:56Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - Spatial-Temporal Interplay in Human Mobility: A Hierarchical
Reinforcement Learning Approach with Hypergraph Representation [25.26148307071171]
"STI-HRL" framework captures interplay between spatial and temporal factors in human mobility decision-making.
To complement the hierarchical decision setting, we construct a hypergraph to organize historical data.
Our experiments on two real-world datasets validate the superiority of STI-HRL over state-of-the-art methods in predicting users' next visits.
arXiv Detail & Related papers (2023-12-25T13:00:05Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Spatiotemporal-Augmented Graph Neural Networks for Human Mobility Simulation [35.89805766554052]
We propose a novel framework to model the dynamictemporal effects of locations, namely SRpatio-Augmented gaph neural networks.
The STAR framework designs varioustemporal graphs to capture the behaviors correspondence and builds a novel branch to simulate the varying dwells in locations, which duration is finally optimized in an adversarial manner.
arXiv Detail & Related papers (2023-06-15T11:47:45Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - Predicting Human Mobility via Self-supervised Disentanglement Learning [21.61423193132924]
We propose a novel disentangled solution called SSDL for tackling the next POI prediction problem.
We present two realistic trajectory augmentation approaches to enhance the understanding of both the human intrinsic periodicity and constantly-changing intents.
Extensive experiments conducted on four real-world datasets demonstrate that our proposed SSDL significantly outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-17T16:17:22Z) - A Neural Active Inference Model of Perceptual-Motor Learning [62.39667564455059]
The active inference framework (AIF) is a promising new computational framework grounded in contemporary neuroscience.
In this study, we test the ability for the AIF to capture the role of anticipation in the visual guidance of action in humans.
We present a novel formulation of the prior function that maps a multi-dimensional world-state to a uni-dimensional distribution of free-energy.
arXiv Detail & Related papers (2022-11-16T20:00:38Z) - Stateful Offline Contextual Policy Evaluation and Learning [88.9134799076718]
We study off-policy evaluation and learning from sequential data.
We formalize the relevant causal structure of problems such as dynamic personalized pricing.
We show improved out-of-sample policy performance in this class of relevant problems.
arXiv Detail & Related papers (2021-10-19T16:15:56Z) - Temporal Predictive Coding For Model-Based Planning In Latent Space [80.99554006174093]
We present an information-theoretic approach that employs temporal predictive coding to encode elements in the environment that can be predicted across time.
We evaluate our model on a challenging modification of standard DMControl tasks where the background is replaced with natural videos that contain complex but irrelevant information to the planning task.
arXiv Detail & Related papers (2021-06-14T04:31:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.