Exploring Active 3D Object Detection from a Generalization Perspective
- URL: http://arxiv.org/abs/2301.09249v1
- Date: Mon, 23 Jan 2023 02:43:03 GMT
- Title: Exploring Active 3D Object Detection from a Generalization Perspective
- Authors: Yadan Luo, Zhuoxiao Chen, Zijian Wang, Xin Yu, Zi Huang, Mahsa
Baktashmotlagh
- Abstract summary: Uncertainty-based active learning policies fail to balance the trade-off between point cloud informativeness and box-level annotation costs.
We propose textscCrb, which hierarchically filters out the point clouds of redundant 3D bounding box labels.
Experiments show that the proposed approach outperforms existing active learning strategies.
- Score: 58.597942380989245
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: To alleviate the high annotation cost in LiDAR-based 3D object detection,
active learning is a promising solution that learns to select only a small
portion of unlabeled data to annotate, without compromising model performance.
Our empirical study, however, suggests that mainstream uncertainty-based and
diversity-based active learning policies are not effective when applied in the
3D detection task, as they fail to balance the trade-off between point cloud
informativeness and box-level annotation costs. To overcome this limitation, we
jointly investigate three novel criteria in our framework Crb for point cloud
acquisition - label conciseness}, feature representativeness and geometric
balance, which hierarchically filters out the point clouds of redundant 3D
bounding box labels, latent features and geometric characteristics (e.g., point
cloud density) from the unlabeled sample pool and greedily selects informative
ones with fewer objects to annotate. Our theoretical analysis demonstrates that
the proposed criteria align the marginal distributions of the selected subset
and the prior distributions of the unseen test set, and minimizes the upper
bound of the generalization error. To validate the effectiveness and
applicability of \textsc{Crb}, we conduct extensive experiments on the two
benchmark 3D object detection datasets of KITTI and Waymo and examine both
one-stage (\textit{i.e.}, \textsc{Second}) and two-stage 3D detectors (i.e.,
Pv-rcnn). Experiments evidence that the proposed approach outperforms existing
active learning strategies and achieves fully supervised performance requiring
$1\%$ and $8\%$ annotations of bounding boxes and point clouds, respectively.
Source code: https://github.com/Luoyadan/CRB-active-3Ddet.
Related papers
- Distribution Discrepancy and Feature Heterogeneity for Active 3D Object Detection [18.285299184361598]
LiDAR-based 3D object detection is a critical technology for the development of autonomous driving and robotics.
We propose a novel and effective active learning (AL) method called Distribution Discrepancy and Feature Heterogeneity (DDFH)
It simultaneously considers geometric features and model embeddings, assessing information from both the instance-level and frame-level perspectives.
arXiv Detail & Related papers (2024-09-09T08:26:11Z) - Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
We propose LiDAR-2D Self-paced Learning (LiSe) for unsupervised 3D detection.
RGB images serve as a valuable complement to LiDAR data, offering precise 2D localization cues.
Our framework devises a self-paced learning pipeline that incorporates adaptive sampling and weak model aggregation strategies.
arXiv Detail & Related papers (2024-07-11T14:58:49Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - Semi-supervised 3D Object Detection with Proficient Teachers [114.54835359657707]
Dominated point cloud-based 3D object detectors in autonomous driving scenarios rely heavily on the huge amount of accurately labeled samples.
Pseudo-Labeling methodology is commonly used for SSL frameworks, however, the low-quality predictions from the teacher model have seriously limited its performance.
We propose a new Pseudo-Labeling framework for semi-supervised 3D object detection, by enhancing the teacher model to a proficient one with several necessary designs.
arXiv Detail & Related papers (2022-07-26T04:54:03Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
It is commonly assumed in semi-supervised learning (SSL) that the unlabeled data are drawn from the same distribution as that of the labeled ones.
We propose to selectively utilize unlabeled data through sample weighting, so that only conducive unlabeled data would be prioritized.
arXiv Detail & Related papers (2022-05-02T16:09:17Z) - SESS: Self-Ensembling Semi-Supervised 3D Object Detection [138.80825169240302]
We propose SESS, a self-ensembling semi-supervised 3D object detection framework. Specifically, we design a thorough perturbation scheme to enhance generalization of the network on unlabeled and new unseen data.
Our SESS achieves competitive performance compared to the state-of-the-art fully-supervised method by using only 50% labeled data.
arXiv Detail & Related papers (2019-12-26T08:48:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.