Using Knowledge Graphs for Performance Prediction of Modular
Optimization Algorithms
- URL: http://arxiv.org/abs/2301.09876v1
- Date: Tue, 24 Jan 2023 09:28:57 GMT
- Title: Using Knowledge Graphs for Performance Prediction of Modular
Optimization Algorithms
- Authors: Ana Kostovska, Diederick Vermetten, Sa\v{s}o D\v{z}eroski, Pan\v{c}e
Panov, Tome Eftimov, Carola Doerr
- Abstract summary: We build a performance prediction model using a knowledge graph embedding-based methodology.
We show that a triple classification approach can correctly predict whether a given algorithm instance will be able to achieve a certain target precision.
- Score: 4.060078409841919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Empirical data plays an important role in evolutionary computation research.
To make better use of the available data, ontologies have been proposed in the
literature to organize their storage in a structured way. However, the full
potential of these formal methods to capture our domain knowledge has yet to be
demonstrated. In this work, we evaluate a performance prediction model built on
top of the extension of the recently proposed OPTION ontology. More
specifically, we first extend the OPTION ontology with the vocabulary needed to
represent modular black-box optimization algorithms. Then, we use the extended
OPTION ontology, to create knowledge graphs with fixed-budget performance data
for two modular algorithm frameworks, modCMA, and modDE, for the 24 noiseless
BBOB benchmark functions. We build the performance prediction model using a
knowledge graph embedding-based methodology. Using a number of different
evaluation scenarios, we show that a triple classification approach, a fairly
standard predictive modeling task in the context of knowledge graphs, can
correctly predict whether a given algorithm instance will be able to achieve a
certain target precision for a given problem instance. This approach requires
feature representation of algorithms and problems. While the latter is already
well developed, we hope that our work will motivate the community to
collaborate on appropriate algorithm representations.
Related papers
- Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
Recent advances in algorithmic design show how to utilize predictions obtained by machine learning models from past and present data.
Prior research in this context was focused on a paradigm where the predictor is pre-trained on past data and then used as a black box.
In this work, we unpack the predictor and integrate the learning problem it gives rise for within the algorithmic challenge.
arXiv Detail & Related papers (2024-03-12T08:40:21Z) - Reinforced In-Context Black-Box Optimization [64.25546325063272]
RIBBO is a method to reinforce-learn a BBO algorithm from offline data in an end-to-end fashion.
RIBBO employs expressive sequence models to learn the optimization histories produced by multiple behavior algorithms and tasks.
Central to our method is to augment the optimization histories with textitregret-to-go tokens, which are designed to represent the performance of an algorithm based on cumulative regret over the future part of the histories.
arXiv Detail & Related papers (2024-02-27T11:32:14Z) - Learning the hub graphical Lasso model with the structured sparsity via
an efficient algorithm [1.0923877073891446]
We introduce a two-phase algorithm to estimate hub graphical models.
The proposed algorithm first generates a good initial point via a dual alternating direction method of multipliers.
It then warms a semismooth Newton (SSN) based augmented Lagrangian method (ALM) to compute a solution that is accurate enough for practical tasks.
arXiv Detail & Related papers (2023-08-17T08:24:28Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Optimal Inference in Contextual Stochastic Block Models [0.0]
The contextual block model (cSBM) was proposed for unsupervised community detection on attributed graphs.
The cSBM has been widely used as a synthetic dataset for evaluating the performance of graph-neural networks (GNNs) for semi-supervised node classification.
We show that there can be a considerable gap between the accuracy reached by this algorithm and the performance of the GNN architectures proposed in the literature.
arXiv Detail & Related papers (2023-06-06T10:02:57Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Goal Agnostic Planning using Maximum Likelihood Paths in Hypergraph
World Models [1.370633147306388]
We present a hypergraph-based machine learning algorithm, a datastructure--driven maintenance method, and a planning algorithm based on a probabilistic application of Dijkstra's algorithm.
We prove that the algorithm determines optimal solutions within the problem space, mathematically bound learning performance, and supply a mathematical model analyzing system state progression through time.
arXiv Detail & Related papers (2021-10-18T16:22:33Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
Kolmogorov model (KM) is an interpretable and predictable representation approach to learning the underlying probabilistic structure of a set of random variables.
We propose a computationally scalable KM learning algorithm, based on the regularized dual optimization combined with enhanced gradient descent (GD) method.
It is shown that the accuracy of logical relation mining for interpretability by using the proposed KM learning algorithm exceeds $80%$.
arXiv Detail & Related papers (2021-07-11T10:33:02Z) - A Framework and Benchmarking Study for Counterfactual Generating Methods
on Tabular Data [0.0]
Counterfactual explanations are viewed as an effective way to explain machine learning predictions.
There are already dozens of algorithms aiming to generate such explanations.
benchmarking study and framework can help practitioners in determining which technique and building blocks most suit their context.
arXiv Detail & Related papers (2021-07-09T21:06:03Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.